26 April 2021

wood Massachusetts, Inc. 271 Mill Road 3rd Floor Chelmsford, MA 01824 USA T: 978-692-9090 www.woodplc.com

Mr. Sam Dionne Business Development Manager – NE Sunpin Energy Services, LLC 2020 Main Street, Suite 300 Irvine, CA 92614

Re: Report of Laboratory Testing Solar PV Ground Mount Development Project 40 Sizer Drive, Wales, MA Wood File No. 3652-20-0259

Mr. Dionne:

Wood Environment & Infrastructure Solutions, Inc. (Wood) provides the authorized laboratory test results, and herewith submits the data and our comments. We performed the services in accordance with the terms of our 11 March 2020 proposal to Sunpin Energy Services, LLC (Sunpin). The scope of services includes general subsurface sampling and testing of soil corrosion potential across the area of the proposed solar array construction.

A Wood professional staff member visited the site on 6 April 2021 and advanced four, shallow handaugered soil borings to collect soil samples for corrosion testing. We established the sample locations in the field by estimating angles and measuring from existing site features; we logged the soil samples in the field. We field-classified soil samples with respect to material type and consistency. Appendix 1 contains a Sample Location Plan, which shows the approximate sample locations in relation to the currently proposed improvements. We reviewed the samples and selected specimens to test for corrosion properties including soil pH, electrical resistivity, sulfate, and chloride ion concentration at our subcontracted soil testing laboratory, GeoTesting Express. After testing, GeoTesting Express will temporarily store the remaining samples not consumed in the testing; they will dispose of these samples after 60 days unless you direct us otherwise. We provide a summary of results and the laboratory test reports in Appendix 2.

Table 1 provides a summary of the corrosion suite test results and Appendix 2 presents the complete results and test reports. We tested four samples for pH, electrical resistivity, chloride and sulfate ion concentration. Table 2 through Table 4 show the ranges of the various corrosion test references.

, Depth Moistur		Moisture	Metal Corrosi	on Potential	Concrete Corrosion Potential	
Sample	iple (ft) (%)		Electrical Resistivity (Ohm/cm)	Chloride (ppm)	рН	Sulfate (ppm)
HA-1	0-4	16.9	206,607	ND	5.6	22
Interpretation		Non-Corrosive	CR = 0 µm/year	Moderate	Not Applicable	
HA-2	0-4	12.9	165,286	ND	5.3	ND
Interpretation		Non-corrosive	CR = 0 µm/year	Moderate	Not Applicable	
HA-3	0-4	28.7	94,006	ND	5.0	10
Interpretation		Non-corrosive	CR = 0 μm/year	Moderate	Not Applicable	
HA-4	0-4	10.4	216,938	ND	5.6	ND
I	nterpreta	tion	Non-corrosive	$CR = 0 \mu m/year$	Moderate	Not Applicable

Table 1 Laboratory Corrosion Test Summary

Comp – Composite Sample. ND - not detected, ppm – parts per million or milligrams per kilogram. n/t – not tested. CR – Corrosion Rate. (1) See Table 2, (2) See Section 1.2. (3) See Table 3, (4) See Table 4.

1.1 Electrical Resistivity and Steel

Table 2 provides a rating of soil corrosivity of uncoated steel based upon electrical resistivity [2].

Table 2 Corrosivity Rating for Uncoated Steel

Electrical Resistivity Range						
Soil Resistivity (Ohm-cm) 0 - 1,000 1,000 - 3,000 3,000 - 5,000 5,000 - 10,000 10,000 - 20,000 >20,000					>20,000	
Corrosivity Rating	Extremely Corrosive	Highly Corrosive	Corrosive	Moderately Corrosive	Mildly Corrosive	non- Corrosive

1.2 Chloride lons and Steel

Chloride ions concentration affect corrosion rate of embedded steel. According to the ASCE article "Corrosion Rate Evaluation and Prediction for Piles Based on Long-Term Field Performance" [1], the relationship between corrosion rate and chloride concentration may be expressed as:

$$CR = (16.28*Ln (CL)-83.8) \mu m/year$$

Where: CL is the Chloride concentration in ppm. CR is the corrosion rate of steel in μ m/year. For concentrations less than about 172 ppm, the CR is essentially zero.

1.3 Acidity (pH) and Concrete

Acidity affects the corrosion of concrete; Based on the NRCS, Table 618.81 [3], Table 3 shows the pH testing results and corresponding corrosion potential.

Potential	Low	Moderate	High
Sandy and organic soil	pH > 6.5	5.5 > pH > 6.5	pH < 5.5
Loamy and clayey soil	pH > 6.0	5.0 > pH > 6.0	pH < 5.0

Table 3 Corrosion Potential for Concrete Per NRCS Table 618.81

1.4 Sulfate lons and Concrete

Sulfate ion concentration affects the corrosion of concrete; sulfate exposure Class is based upon ACI 318 classification, Table 19.3.1.1 [4]. Table 4 shows the classification the soil samples based upon ACI.

Table 4 Sulfate Corrosion Scale per ACI 318

Class	Sulfate (ppm) ⁽¹⁾	Corrosion Potential Description		
SO	<150	Not Applicable	(injurious sulfate attack is not a concern)	
S1	150 to <1,500	Moderate	(equal to seawater exposure, Type II cement)	
S2	1,500 to <10,000	Severe	(Type V cement)	
S3	> 10,000	Very Severe	(Type V cement + pozzolan or slag)	

(1) From ACI 318 Table 19.3.1.1

We prepared this report for the exclusive use of Sunpin Energy Services for the site and criteria stated herein. You should address questions or interpretation regarding any portion of the report directly to Wood. Reliance upon, usage, or implementation of the information or recommendations stated in this report by any member of the project team should not be undertaken without direct consultation of the client and Wood. Wood accepts no responsibility for damages, if any, suffered by any third party because of decisions made or actions based on this report.

Wood appreciates this opportunity to be of service to Sunpin Energy Services. At your convenience, we are available to discuss the details of this report and any questions that you may have.

Sincerely, **Wood**

las E. Tate, PE (MA) E. TATE Senior Geotechnical Engineer CIVIL

Reviewed By: Thomas D. Humbert, PE (TN) Geotechnical Engineer

2.0 REFERENCES

- [1] J. R. K. a. E. J. Decker, "Corrosion rate evaluation and prediction for piles based on long-term field performance.," *Journal of geotechnical and geoenvironmental engineering*, *134(3)*, pp. 341-351., 2008.
- [2] A. W. Peabody, Peabody's Control of Pipeline Corrosion, Houston, Texas: NACE international, 2001.
- [3] NRCS, "618.81 Guide for Estimating Risk of Corrosion Potential for Concrete," 2017. [Online]. Available: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054224.
- [4] ACI, ACI-318 Building Code Requirements for Structural Concrete and Commentary, Washington, D.C.: American Concrete Institute, 2019.

Appendix - Report of Laboratory Testing 40 Sizer Drive, Wales, MA Wood File No. 3652-20-0259

APPENDIX 1

SAMPLE LOCATION PLAN

Appendix - Report of Laboratory Testing 40 Sizer Drive, Wales, MA Wood File No. 3652-20-0259

APPENDIX 2

LABORATORY RESULTS

Client:	Wood Environmental & Infrastructure, Inc.					
Project:	Nales, MA Ground Mount Solar					
Location:	Wales, MA			Project No:	GTX-313467	
Boring ID:		Sample Type:		Tested By:	ckg	
Sample ID:		Test Date:	04/19/21	Checked By:	bfs	
Depth :		Test Id:	615418			

Moisture Content of Soil and Rock - ASTM D2216

Boring ID	Sample ID	Depth	Description	Moisture Content,%
HA1	1-1	0-4 ft	Moist, yellowish brown silt	16.9
HA2	2- 1	0-4 ft	Moist, light brownish yellow silt	12.9
HA3	3- 1	0-4 ft	Moist, brown clay with gravel	28.7
HA4	4- 1	0-4 ft	Moist, brownish yellow silty sand	10.4

Notes: Temperature of Drying : 110° Celsius

Client:	Wood Environmental & Infrastructure, Inc.				
Project:	Wales, MA Ground Mount Solar				
Location:	Wales, MA			Project No:	GTX-313467
Boring ID:		Sample Type:		Tested By:	fmj
Sample ID	:	Test Date:	04/19/21	Checked By:	bfs
Depth :		Test Id:	615422		

pH of Soil by ASTM D4972

Boring ID	Sample ID	Depth	Visual Description	pH of Soil in Distilled Water	pH of Soil in Calcium Chloride
HA1	1-1	0-4 ft	Moist, yellowish brown silt	5.6	4.8
HA2	2-1	0-4 ft	Moist, light brownish yellow silt	5.3	4.4
НАЗ	3-1	0-4 ft	Moist, brown clay with gravel	5.0	4.2
HA4	4-1	0-4 ft	Moist, brownish yellow silty sand	5.6	4.8

Notes: Sample Preparation: screened through #10 sieve Method A, pH meter used

Client:	Wood Environmental & Infrastructure, Inc.
Project:	Wales, MA Ground Mount Solar
Location:	Wales, MA
GTX#:	313467
Test Date:	04/17/21
Tested By:	cl
Checked By:	bfs

Laboratory Measurement of Soil Resistivity Using the Wenner Four-Electrode Method by ASTM G57 (Laboratory Measurement)

Boring ID	Sample ID	Depth, ft.	Sample Description	Electrical Resistivity, ohm-cm	Electrical Conductivity, (ohm-cm) ⁻¹
HA1	1-1	0-4	Moist, yellowish brown silt	206,607	4.84E-06
HA2	2-1	0-4	Moist, light brownish yellow silt	165,286	6.05E-06
НАЗ	3-1	0-4	Moist, brown clay with gravel	94,006	1.06E-05
HA4	4-1	0-4	Moist, brownish yellow silty sand	216,938	4.61E-06

Notes:Test Equipment: Nilsson Model 400 Soil Resistance Meter, MC Miller Soil Box
Water added to sample to create a thick slurry prior to testing (saturated condition).
Electrical Conductivity is calculated as inverse of Electrical Resistivity (per ASTM G57)
Test conducted in standard laboratory atmosphere: 68-73 F

PO Box 572455 / Salt Lake City UT 84157-2455 / USA TEL +1 801 262 2448 · FAX +1 801 262 9870 · www.TEi-TS.com

Analysis No.	TS-A2109523
Report Date	20 April 2021
Date Sampled	12 April 2021
Date Received	15 April 2021
Where Sampled	Acton, MA USA
Sampled By	Client

This is to attest that we have examined: Soil: Project: Wales Ground Mount Solar; Site Location: Wales, MA; Job Number: GTX-313467

When examined to the applicable requirements of:

ASTM D 512-12	"Standard Test Methods for Chloride Ion in Water" Method B
ASTM D 516-16	"Standard Test Method for Sulfate Ion in Water"

Results:

ASTM D 512 - Chloride Method B

Sample		Results		Detection Limit		
		ppm (mg/kg)	% ¹	Detection Limit		
HA1		10	0.004.0			
1-1	-	< 10.	< 0.0010			
HA2		< 10	< 0.0010			
2-1	-	< 10.	< 0.0010	10		
HA3		. 10	. 0.0010	10.		
3-1	-	< 10.	< 0.0010			
HA4		- 10	< 0.0010			
4-1	-	< 10.	< 0.0010			

NOTE: ¹Percent by weight after drying and prepared as per the Standard.

ASTM D 516 - Sulfates (Soluble)

Sample		Results		Dotoction Limit
		ppm (mg/kg)	% ¹	Detection Limit
HA1		22	0.0022	
1-1	-	22.	0.0022	
HA2		< 10	< 0.0010	
2-1	-	< 10.	< 0.0010	10
НАЗ		10	0.0010	10.
3-1	-	10.	0.0010	
HA4		- 10	10.0010	
4-1	-	< 10.	< 0.0010	

NOTE: ¹Percent by weight after drying and prepared as per the Standard.

END OF ANALYSIS

USEPA Laboratory ID UT00930

1/USRIL

Merrill Gee P.E. – Engineer in Charge

© 2021 by Testing Engineers International, Inc. CAVEAT: This certificate may not be reproduced except in full, without the expressed written consent of TEi-Testing Services, LLC. Note: The values in this certificate are the values obtained under standard test conditions as reported in the appropriate Report of Test and thus may be used for purposes of demonstrating compliance or for comparison with other units tested under the same standard. The results do not indicate the function of the sample(s) under nonstandard or field conditions. Statement of Risk: Client understands and agrees that declarations of conformity are made by directly comparing the measurement results against the test limits given in the standard without consideration to factors that may contribute to measurement uncertainty and accepts the shared risk that arises from this approach. This certificate gives the characteristics of the sample(s) submitted for testing only. It does not and may not be used to certify the characteristics of the product, nor to imply that the product in general meets the requirements of any standard, nor its acceptability in the marketplace. TEi stylized lettering and logo are registered trademarks and use is by contract and/or written permission only. TEi-Testing Services is a wholly owned LLC of Testing Engineers International, Inc.