

Stormwater Management Report

Ground-Mount Solar PV Development 40 Sizer Drive Wales, MA 01081 Project # 3652200259

Prepared for:

Sunpin Solar Development LLC

3 Corporate Park, Suite 168, Irvine, CA 92606

January 2021, Revised April 2021

wood.

Stormwater Management Report

Ground-Mount Solar PV Development 40 Sizer Drive, Wales, MA

Project # 3652200259

Prepared for: Sunpin Solar Development LLC 3 Corporate Park, Suite 168, Irvine, CA 92606

Prepared by:

Wood Massachusetts, Inc. 271 Mill Road, 3rd Floor Chelmsford, MA, 01824 United States

January 2021, Revised April 2021

Prepared and Reviewed by:

Michael Wilkinson, PE Project Civil Engineer

11. P. V.I.C.

Andrew Vardakis, PE Senior Engineer

Copyright and non-disclosure notice

The contents and layout of this report are subject to copyright owned by Wood (© Wood Massachusetts, Inc.). save to the extent that copyright has been legally assigned by us to another party or is used by Wood under license. To the extent that we own the copyright in this report, it may not be copied or used without our prior written agreement for any purpose other than the purpose indicated in this report. The methodology (if any) contained in this report is provided to you in confidence and must not be disclosed or copied to third parties without the prior written agreement of Wood. Disclosure of that information may constitute an actionable breach of confidence or may otherwise prejudice our commercial interests. Any third party who obtains access to this report by any means will, in any event, be subject to the Third Party Disclaimer set out below.

Third-party disclaimer

Any disclosure of this report to a third party is subject to this disclaimer. The report was prepared by Wood at the instruction of, and for use by, our client named on the front of the report. It does not in any way constitute advice to any third party who is able to access it by any means. Wood excludes to the fullest extent lawfully permitted all liability whatsoever for any loss or damage howsoever arising from reliance on the contents of this report. We do not however exclude our liability (if any) for personal injury or death resulting from our negligence, for fraud or any other matter in relation to which we cannot legally exclude liability.

wood.

Table of Contents

1.0	Existing	J Conditions	.1
	1.1	Groundwater and Soils	.1
	1.2	FEMA Flood Zone	.1
	1.3	Wetlands/Waterbodies	.2
	1.4	Environmental Resource Areas	.2
	1.5	Pre-development Analysis	.2
2.0	Propos	ed Conditions	.3
	2.1	Post-development Analysis	.4
3.0	Hydrolo	ogic Analysis	.7
4.0	Conclus	sion – Massachusetts Stormwater Management Standards	.8

List of Tables

Table 1: Soils Summary	1
Table 2: Hydrologic Analysis Summary	7

List of Appendices

Appendix A: Ba	ckground Information
Appendix A. ⁻	: NRCS Soils Information
Appendix A.2	: NOAA Rainfall Data
Appendix A.3	: FEMA Flood Map
Appendix A.4	Environmental Resource Map
Appendix A.	: Test Hole Location Plan & Logs

Appendix B: HydroCAD Analyses

Appendix B.1:	Existing HydroCAD Analysis
Appendix B.2:	Proposed HydroCAD Analysis
Appendix B.3:	Runoff Velocity Analysis

Appendix C: MassDEP Checklist for Stormwater Report

Appendix D: Existing and Proposed Watershed Maps

1.0 Existing Conditions

The project Site, approximately 100 acres, is located at the southern end of Sizer Drive in Wales, Massachusetts in the R1 residential zoning district. Under existing conditions, the site is primarily undeveloped and consists of woods. A residential dwelling exists on site with a detached garage, both situated near the end Sizer Drive. It should be noted that the site property includes approximately 150 feet of the Sizer Drive roadway that is not included within the Town right-of-way.

Figure 1 – Site Location

1.1 Groundwater and Soils

Based on Natural Resources Conservation Service (NRCS) Web Soil Survey mapping, soils within the development areas of the Site are as follows:

	Table 1: Soils Summary								
Map Symbol	Soil Type	Hydrologic Soil Group	Depth to Water						
307D	Paxton fine sandy loam, 15-25% slopes, extremely stony	С	±26″						
100E	Brookfield-Brimfield-Rock outcrop complex, steep	-	>6.56′						

Wood conducted test holes within the footprints of the proposed stormwater best management practices (BMPs) in order to confirm site soil type(s) and depths to groundwater. Fine sandy loam with cobbles was encountered in all test holes and consistent with NRCS mapping for Hydrologic C soils. Groundwater was found at depths ranging from 16 to 29 inches. See Appendix A.1 for the NRCS soil maps and see appendix A.5 for the Test Hole Location Plan and MA Form 11 Soil Suitability forms.

1.2 FEMA Flood Zone

According to FEMA flood insurance rate map (FIRM) number 25013C0479E effective July 16, 2013, the Site lies within zone X. This zone is designated as areas with minimal flood hazard. Furthermore, the Project is not anticipated to impact the floodplain. See Appendix A.3 for the FEMA flood map.

• • •

1.3 Wetlands/Waterbodies

Wood verified a previous wetland delineation in the field in October of 2020. Wetlands exist along the eastern and western sides of the Site. Also present on the site is an unnamed stream listed as intermittent according to the Census 2000 Rivers and Streams data layer on the Massachusetts GIS online mapping tool. The stream is also listed as a cold-water fishery according to the Department of Fish and Wildlife Cold-water Fisheries Resources data layer. The stream runs southwest to northeast in the northern portion of the site and is tributary to Wales Brook, also a cold-water fishery.

1.4 Environmental Resource Areas

According to Massachusetts GIS online mapping tool, the Site is not within any wellhead protection areas, areas of critical environmental concern (ACEC), NHESP estimated habitats of rare wildlife, priority habitats of rare species, or potential/certified vernal pools. The Site does fall within a prime 2 and prime 3 forest land zone. As previously mentioned, the site is tributary to a cold-water fishery. See Appendix A.4 for an environmental resource map.

1.5 Pre-development Analysis

Grades on the site are moderately steep. Topography of the Site shows that runoff flows generally from west to east to the wetland complex along the eastern side of the Site before reaching the intermittent stream running offsite to the north. Smaller portions of the Site discharge runoff to the west and north. Runoff that is initially directed to the western wetlands complex eventually flows east via the stream before reaching the eastern wetland area.

Under pre-development conditions, the Site was analyzed as five sub-watersheds (total study area of 1,049,036 square feet or 24.08± acres) contributing to the following Design Points:

- Design Point "DP-1" is the flagged wetland to the west of the Site.
- Design Point "DP-2" is the flagged wetland area along the eastern side of the Site.
- Design Point "DP-3" is the flagged wetland area to the northwest of the project property.

See Appendix B.1 for Existing HydroCAD Calculations and Appendix D for an Existing Watershed Map.

wood.

- Sub-watershed "EX-S1" represents the western portion of the Site. It is 2.72± acres (118,364 sq.ft.). and consists entirely of woods in good condition. Runoff from EX-S1 flows overland generally from northeast to southwest to the existing western wetland area (Design Point DP-1).
- Sub-watershed "EX-S2" represents the central/eastern portion of the Site. It is 10.82± acres (471,424 sq.ft.) and is comprised mostly of woods in good condition with smaller areas of impervious driveway and roof. Runoff from EX-S2 flows overland generally from west to east to the existing wetlands along the eastern side of the Site (Design Point DP-2).
- Sub-watershed "EX-S3" represents the southern portion of the Site as well as offsite area to the south. It is 9.32± acres (406,052 sq.ft.) and consists entirely of woods in good condition. Runoff from EX-S3 flows overland generally from southwest to northeast to the existing wetlands along the eastern side of the Site (Design Point DP-2).
- Sub-watershed "EX-S4" represents the northwestern portion of the Site. It is 1.22± acres (53,196 sq.ft.) and consists entirely of woods in good condition. Runoff from EX-S4 flows overland generally from south to north before travelling offsite to Design Point DP-3.

2.0 **Proposed Conditions**

The stormwater runoff pattern for the solar Project Site will remain largely unchanged. The proposed development consists of a ground-mounted solar PV array and associated site access drive from the end of Sizer Drive in Wales, Massachusetts. The existing garage on Site will be razed, however, the adjacent residential structure will remain. Proposed development impacts have been minimized to the maximum extent practicable by implementing bioretention best management practices (BMPs) and a crushed stone access drive.

There will be approximately 12.7 acres of tree clearing to reduce shading and maximize the energy output of the solar development. With the exception of the stream crossing area, there will be no tree clearing within the 50-ft wetland buffer zone. Following tree clearing, the proposed access road will be graded in order to ensure slopes are not too steep for maintenance and emergency vehicles. The proposed 20-foot wide access road will start at the intersection of the Site's property line with Sizer Drive and follow the path of the existing access drive before extending to the southern portion of the Site. The access road will cross the existing stream via an open-bottom (three-sided) concrete box culvert. In order to minimize disturbance of the streambed and wetland resource area, the culvert will span the bank-full width and resource area width. There will be no permanent disturbance to the streambed or wetland resource area as a result of this development. Additionally, the proposed access road will be constructed with clean angular crushed stone to maintain infiltration capacity. The access road will be seldomly utilized except for occasional maintenance needs. The runoff curve number for the access road was calculated as follows utilizing the equation for potential maximum retention from TR-55 and HydroCAD guidance for CN modeling:

$$S = \frac{1000}{CN} - 10$$
 or $CN = \frac{1000}{S+10}$

S = available voids in inches = 33% void ratio x 12-inch section = 3.96 inches

$$CN = \frac{1000}{3.96 + 10} = 72$$

Apart from the portions of the access drive and bioretention basins, the existing ground surface will not be regraded; however, it will be revegetated. Only the stumps within the fenced area will be removed (approximately 7.8 acres). Outside the fenced area but within the tree clearing limits, stumps will remain, but groundcover will be re-established through seeding. These areas will not be regularly maintained and are therefore anticipated to re-establish as brush. All surfaces within the proposed fenceline, except for the concrete equipment pads and the crushed stone access road, will be revegetated to meadow conditions.

In aggregate, the project has been designed to provide required controls for post-development peak rates at or below pre-development rates for the modeled storm events.

2.1 **Post-development Analysis**

Under post-development conditions, the Site was divided into six sub-watersheds (total study area of 1,049,036 square feet or $24.08 \pm$ acres) contributing to the previously described Design Points DP-1 through DP-3, where peak discharge rates were evaluated. See Appendix B.2 for Proposed HydroCAD calculations and Appendix D for a Proposed Drainage Figure.

wood.

- Sub-watershed "PR-S1.1" represents the western portion of the Site directed to Bioretention Basin 1. It is 1.24± acres (53,826 sq.ft.) and is comprised mostly of meadow and brush (solar panel area) with smaller areas of woods and brush in good condition. Runoff from PR-S1.1 flows overland generally from northeast to southwest to Detention Basin 1 before being discharged to Design Point DP-1.
- Sub-watershed "PR-S1.2" represents the western portion of the Site not directed to a stormwater best
 management practice (BMP). It is 1.48± acres (64,538 sq.ft.) and is comprised mostly of woods in good
 condition with a small area of brush. Runoff from PR-S1.2 flows overland generally from northwest to
 southeast to Design Point DP-1.
- Sub-watershed "PR-S2.1" represents the northern portion of the Site directed to Bioretention Basin 2. It is 2.55± acres (110,956 sq.ft.) and is comprised of meadow and brush with a smaller area of woods in good condition. Runoff from PR-S2.1 flows overland generally from west to east to Detention Basin 2 before being discharged to Design Point DP-2.
- Sub-watershed "PR-S2.2" is 8.28± acres (360,469 sq.ft.) and consists of meadow and brush (solar panel area) as well as woods in good condition. It represents the central and eastern portion of the Site including the proposed crushed stone access road. While this roadway is not modeled as a conventional BMP, it is situated downgradient of the solar area and parallel to existing contours. Runoff from frequent smaller storms that reaches the roadway will be encouraged to infiltrate through the crushed stone while larger storms will continue towards Design Point DP-2.
- Sub-watershed "PR-S3" represents the southern portion of the Site as well as offsite area to the south. It is 9.32± acres (406,051 sq.ft.) and is comprised mostly of woods and brush in good condition and meadow solar panel area. Runoff from PR-S3 flows overland generally from southwest to northeast before reaching Design Point DP-2.

Page 6

wood.

• Sub-watershed "PR-S4" represents the northwestern portion of the Site. It is 1.22± acres (53,196 sq.ft.) and is comprised of woods and brush in good condition and meadow. Runoff from PR-S4 flows overland generally from south to north offsite to Design Point DP-3.

3.0 Hydrologic Analysis

The hydrologic analysis was performed using HydroCAD software for a 24-hour, Type III rainfall event. The documented rainfall was taken from NOAA Atlas 14, Volume 10, Version 3, which estimates rainfall amounts for the 2, 10, 25, and 100-year storm events of 3.21, 5.05, 6.20, and 7.96-inches, respectively. See Appendix A.2 for the NOAA Rainfall Data.

Table 2 provides a summary of this analysis, which shows that post-development peak discharge rates will be equal to or less than pre-development peak discharge rates for all calculated storms.

Design	Description	Design Storm	Peak Flow (cfs)		
Point	Description	Design Storm	EX	PR	
		2-yr	1.46	1.16	
DP-1	Western	10-yr	4.00	3.27	
DF-1	Wetlands	25-yr	5.80	4.78	
		100-yr	8.71	7.24	
	Eastern Wetlands	2-yr	12.78	12.35	
DP-2		10-yr	35.38	32.33	
DP-2		25-yr	51.36	46.99	
		100-yr	77.26	73.38	
		2-yr	0.95	0.88	
DP-3	Northwestern Wetlands	10-yr	2.59	2.48	
DP-3		25-yr	3.75	3.63	
		100-yr	5.63	5.49	

Table	2: F	Hvdrol	ogic	Analysi	is Summary	,
TUDIC	-	1,941.01	Ugic.	Analys	is summary	

4.0 Conclusion – Massachusetts Stormwater Management Standards

This project has been designed in accordance with the latest edition of the *Massachusetts Stormwater Handbook*, Chapter 1 Stormwater Management Standards, as summarized below and provided in other submission documents.

1. Standard 1: No New Untreated Discharges

"No new stormwater conveyances (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth."

Standard Met

The proposed development includes a negligible new impervious surface (concrete transformer pads) on the property. Impervious area is also being removed as a result of razing the existing garage. The runoff from each solar panel will flow overland underneath any downhill panels and eventually to a discharge point. The proposed access road will be constructed of angular crushed stone to maintain infiltration capacity. Because there are insignificant proposed impervious surfaces, there is no associated water quality volume requiring stormwater treatment.

2. Standard 2: Peak Rate Attenuation

"Stormwater management systems shall be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates. This Standard may be waived for discharges to land subject to coastal storm flowage as defined in 310 CMR 10.04."

Standard Met

Utilizing two bioretention basin BMPs, the stormwater management system has been designed to attenuate the post-development peak discharge rates to pre-development levels for the 2-, 10-, 25-, and 100-year storm events in accordance with the requirements of Standard 2. (See Table 2 for the Hydrology Analysis Summary).

3. Standard 3: Recharge

"Loss of annual recharge to groundwater shall be eliminated or minimized through the use of infiltration measures including environmentally sensitive site design, low impact development techniques, stormwater best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from pre-development conditions based on soil type. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook."

Standard Not Applicable

The proposed design includes an insignificant impervious area (concrete transformer pads), so the required groundwater recharge volume will be zero. Groundwater recharge on Site is not expected to change. Therefore, Standard 3 is not applicable.

4. Standard 4: Water Quality

"Stormwater management systems shall be designed to remove 80% of the average annual postconstruction load of Total Suspended Solids (TSS). This Standard is met when:

a. Suitable practices for source control and pollution prevention are identified in a long-term pollution prevention plan, and thereafter are implemented and maintained;

b. Structural stormwater best management practices are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook; and

• • •

c. Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook."

Standard Not Applicable

In accordance with Volume 1 Chapter 1 of the Massachusetts Stormwater Handbook under Standard 4, the proposed development only adds a negligible impervious area to the Site. Therefore, the required water quality volume is zero, and Standard 4 is not applicable.

5. Standard 5: Land Uses with Higher Potential Pollutant Loads (LUHPPLs)

"For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention all land uses with higher potential pollutant loads cannot be completely protected from exposure to rain, snow, snow melt, and stormwater runoff, the proponent shall use the specific structural stormwater BMPs determined by the Department to be suitable for such uses as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from land uses with higher potential pollutant loads shall also comply with the requirements of the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26-53 and the regulations promulgated thereunder at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00."

Standard Not Applicable

In accordance with the *MassDEP* definition, the project is not considered a "land use with higher potential pollutant loads" therefore Standard 8 is not applicable to this project.

6. Standard 6: Critical Areas

"Stormwater discharges within the Zone II or Interim Wellhead Protection Area of a public water supply, and stormwater discharges near or to any other critical area, require the use of the specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas, as provided in the Massachusetts Stormwater Handbook. A discharge is near a critical area if there is a strong likelihood of a significant impact occurring to said area, taking into account sitespecific factors. Stormwater discharges to Outstanding Resource Waters and Special Resource Waters shall be removed and set back from the receiving water or wetland and receive the highest and best practical method of treatment. A "storm water discharge" as defined in 314 CMR 3.04(2)(a)1 or (b) to an Outstanding Resource Water or Special Resource Water shall comply with 314 CMR 3.00 and 314 CMR 4.00. Stormwater discharges to a Zone I or Zone A are prohibited unless essential to the operation of a public water supply."

Standard Met

This project discharges to a stream classified by the Department of Fish and Wildlife as a cold-water fishery. The proposed stormwater best management practices for the site include only bioretention basins which are recommended for use near cold-water fisheries in Volume 2 Chapter 2 of the Massachusetts Stormwater Handbook. Additionally, there will be no salting or sanding for de-icing, limited fertilizing to establish vegetation, and upon completion of construction there will be extremely limited access to the site (quarterly inspections and mowing).

7. <u>Standard 7: Redevelopments and Other Projects Subject to the Standards Only to the Maximum</u> <u>Extent Practicable</u>

"A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall

• • •

comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions."

Standard Not Applicable

This project is not considered a redevelopment or infill project; therefore, Standard 7 is not applicable to this project.

8. Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

"A plan to control construction-related impacts including erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented."

Standard Met

Pollution prevention is addressed in the Stormwater Pollution Prevention Plan (SWPPP) provided under separate cover, which confirms the requirements of Standard 8 have been met.

9. Standard 9: Operation and Maintenance Plan

"A long-term operation and maintenance plan shall be developed and implemented to ensure that stormwater management systems function as designed."

Standard Met

Operation and maintenance are addressed in the Operation and Maintenance Plan and Long-Term Pollution Prevention Plan provided under separate cover, which confirms the requirements of standard 9 have been met.

10. Standard 10: Prohibition of Illicit Discharges

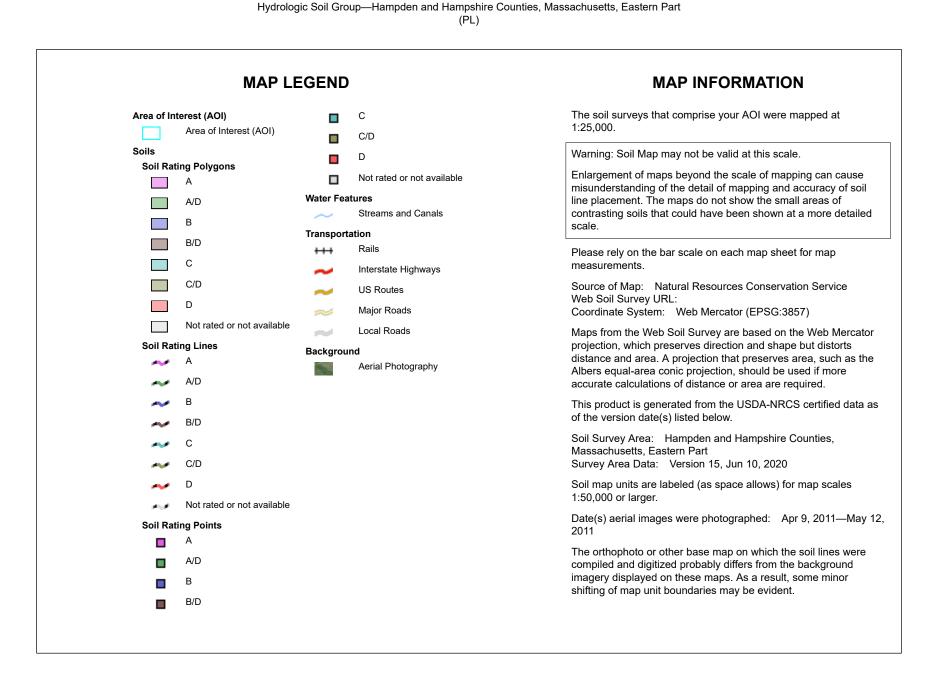
"All illicit discharges to the stormwater management system are prohibited."

Standard Met

There are no existing or proposed illicit discharges from the Site; therefore, Standard 10 has been met.

Appendix A:

Background Information



Appendix A.1:

NRCS Soils Information

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Man and A and A al	•••••	Detter	A	Demonstrat AOI
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
100E	Brookfield-Brimfield- Rock outcrop complex, steep		81.9	81.6%
307D	Paxton fine sandy loam, 15 to 25 percent slopes, extremely stony	С	18.5	18.4%
Totals for Area of Inter	est	100.3	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

3/4/2021

Page 4 of 4

Map Unit Description

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this report, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named, soils that are similar to the named components, and some minor components that differ in use and management from the major soils.

Most of the soils similar to the major components have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Some minor components, however, have properties and behavior characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

JSDA

Soils that have profiles that are almost alike make up a *soil series*. All the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of a given series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Additional information about the map units described in this report is available in other soil reports, which give properties of the soils and the limitations, capabilities, and potentials for many uses. Also, the narratives that accompany the soil reports define some of the properties included in the map unit descriptions.

Report—Map Unit Description

Hampden and Hampshire Counties, Massachusetts, Eastern Part

100E—Brookfield-Brimfield-Rock outcrop complex, steep

Map Unit Setting

National map unit symbol: vhr4

Elevation: 330 to 1,260 feet *Mean annual precipitation:* 32 to 50 inches *Mean annual air temperature:* 45 to 50 degrees F *Frost-free period:* 110 to 240 days *Farmland classification:* Not prime farmland

Map Unit Composition

Brookfield and similar soils: 35 percent Brimfield and similar soils: 25 percent Rock outcrop: 20 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Brookfield

Setting

Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Friable coarse-loamy eolian deposits over friable coarse-loamy basal till derived from mica schist; granite and gneiss

Typical profile

H1 - 0 to 2 inches: fine sandy loam *H2 - 2 to 65 inches:* fine sandy loam

Properties and qualities

Slope: 15 to 25 percent Surface area covered with cobbles, stones or boulders: 9.0 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Runoff class: Medium Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water capacity: Moderate (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: A Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Description of Brimfield

Setting

Landform: Hills

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Friable, shallow loamy basal till derived from mica schist over mica schist

Typical profile

H1 - 0 to 2 inches: fine sandy loam

- H2 2 to 15 inches: gravelly fine sandy loam
- H3 15 to 19 inches: unweathered bedrock

Properties and qualities

Slope: 15 to 25 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Somewhat excessively drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 1.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: F144AY033MA - Shallow Dry Till Uplands Hydric soil rating: No

Description of Rock Outcrop

Setting

Parent material: Granite and gneiss

Properties and qualities

Slope: 15 to 25 percent *Depth to restrictive feature:* 0 inches to lithic bedrock

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8s Hydric soil rating: Unranked

Minor Components

Hollis

Percent of map unit: 10 percent Hydric soil rating: No

Charlton

Percent of map unit: 5 percent Hydric soil rating: No

Paxton

Percent of map unit: 5 percent Hydric soil rating: No

307D—Paxton fine sandy loam, 15 to 25 percent slopes, extremely stony

Map Unit Setting

National map unit symbol: 2w67l Elevation: 0 to 1,570 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Paxton, extremely stony, and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Paxton, Extremely Stony

Setting

Landform: Hills, ground moraines, drumlins Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear, convex Across-slope shape: Convex, linear Parent material: Coarse-loamy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Oe - 0 to 2 inches: moderately decomposed plant material *A - 2 to 10 inches:* fine sandy loam *Bw1 - 10 to 17 inches:* fine sandy loam *Bw2 - 17 to 28 inches:* fine sandy loam *Cd - 28 to 67 inches:* gravelly fine sandy loam

Properties and qualities

Slope: 15 to 25 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: 20 to 43 inches to densic material
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 18 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water capacity: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: C Ecological site: F144AY007CT - Well Drained Dense Till Uplands Hydric soil rating: No

Minor Components

Charlton, extremely stony

Percent of map unit: 9 percent Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Woodbridge, extremely stony

Percent of map unit: 5 percent Landform: Ground moraines, drumlins, hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Ridgebury, extremely stony

Percent of map unit: 1 percent
Landform: Drainageways, drumlins, depressions, hills, ground moraines
Landform position (two-dimensional): Toeslope, footslope
Landform position (three-dimensional): Base slope, head slope
Down-slope shape: Concave
Across-slope shape: Concave
Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Hampden and Hampshire Counties, Massachusetts, Eastern Part Survey Area Data: Version 15, Jun 10, 2020

Appendix A.2:

NOAA Rainfall Data

NOAA Atlas 14, Volume 10, Version 3 Location name: Wales, Massachusetts, USA* Latitude: 42.0681°, Longitude: -72.2057° Elevation: 854.21 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

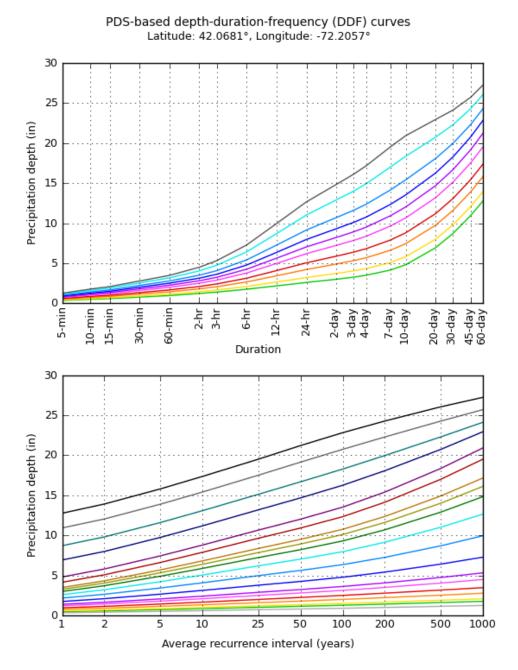
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

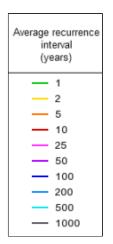
NOAA, National Weather Service, Silver Spring, Maryland

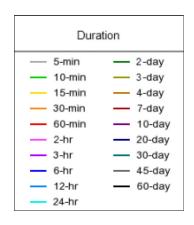
PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

T	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹ Average recurrence interval (years)									
Duration							<u>,</u>			
	1	2	5	10	25	50	100	200	500	1000
5-min	0.344 (0.266-0.445)	0.408 (0.314-0.528)	0.512 (0.393-0.665)	0.598 (0.457-0.782)	0.717 (0.531-0.978)	0.807 (0.585-1.13)	0.900 (0.634-1.30)	1.00 (0.671-1.49)	1.14 (0.737-1.76)	1.25 (0.789-1.97
10-min	0.488 (0.376-0.631)	0.578 (0.446-0.748)	0.725 (0.557-0.942)	0.848 (0.648-1.11)	1.02 (0.752-1.39)	1.14 (0.829-1.59)	1.27 (0.898-1.84)	1.42 (0.951-2.11)	1.61 (1.04-2.49)	1.77 (1.12-2.79
15-min	0.574 (0.443-0.742)	0.680 (0.524-0.880)	0.853 (0.655-1.11)	0.997 (0.762-1.30)	1.20 (0.884-1.63)	1.35 (0.975-1.87)	1.50 (1.06-2.17)	1.67 (1.12-2.48)	1.90 (1.23-2.93)	2.08 (1.32-3.28
30-min	0.765 (0.590-0.989)	0.907 (0.699-1.17)	1.14 (0.875-1.48)	1.33 (1.02-1.74)	1.60 (1.18-2.18)	1.80 (1.30-2.50)	2.00 (1.41-2.89)	2.23 (1.50-3.31)	2.53 (1.64-3.91)	2.78 (1.76-4.38
60-min	0.956 (0.738-1.24)	1.13 (0.874-1.47)	1.42 (1.09-1.85)	1.66 (1.27-2.17)	2.00 (1.48-2.72)	2.25 (1.63-3.13)	2.51 (1.76-3.62)	2.78 (1.87-4.14)	3.17 (2.05-4.89)	3.47 (2.20-5.48
2-hr	1.21 (0.942-1.56)	1.43 (1.11-1.84)	1.79 (1.38-2.31)	2.09 (1.61-2.71)	2.50 (1.86-3.40)	2.81 (2.05-3.91)	3.13 (2.23-4.53)	3.50 (2.36-5.19)	4.04 (2.63-6.22)	4.49 (2.85-7.06
3-hr	1.39 (1.08-1.78)	1.65 (1.28-2.11)	2.06 (1.60-2.65)	2.41 (1.86-3.11)	2.89 (2.16-3.92)	3.24 (2.38-4.51)	3.62 (2.59-5.25)	4.07 (2.75-6.01)	4.75 (3.09-7.28)	5.32 (3.38-8.33
6-hr	1.75 (1.37-2.22)	2.09 (1.64-2.66)	2.66 (2.07-3.40)	3.13 (2.42-4.02)	3.77 (2.85-5.11)	4.25 (3.15-5.90)	4.77 (3.46-6.94)	5.41 (3.67-7.97)	6.41 (4.18-9.79)	7.28 (4.64-11.3
12-hr	2.17 (1.71-2.74)	2.65 (2.08-3.34)	3.43 (2.69-4.35)	4.08 (3.18-5.20)	4.97 (3.77-6.70)	5.62 (4.20-7.79)	6.35 (4.63-9.22)	7.26 (4.93-10.6)	8.70 (5.69-13.2)	9.95 (6.37-15.4
24-hr	2.59 (2.06-3.25)	3.21 (2.54-4.03)	4.21 (3.32-5.31)	5.05 (3.96-6.40)	6.20 (4.73-8.31)	7.04 (5.28-9.70)	7.96 (5.85-11.5)	9.15 (6.24-13.3)	11.0 (7.23-16.7)	12.7 (8.12-19.5
2-day	2.99 (2.38-3.72)	3.71 (2.96-4.63)	4.90 (3.88-6.13)	5.88 (4.63-7.40)	7.23 (5.55-9.64)	8.21 (6.19-11.3)	9.31 (6.87-13.4)	10.7 (7.32-15.5)	12.9 (8.49-19.4)	14.8 (9.55-22.8
3-day	3.26 (2.61-4.04)	4.04 (3.23-5.02)	5.32 (4.24-6.64)	6.39 (5.05-8.01)	7.85 (6.04-10.4)	8.92 (6.75-12.2)	10.1 (7.48-14.5)	11.6 (7.97-16.8)	14.0 (9.25-21.0)	16.1 (10.4-24.7
4-day	3.49 (2.80-4.32)	4.32 (3.46-5.35)	5.68 (4.54-7.06)	6.81 (5.40-8.52)	8.36 (6.45-11.1)	9.50 (7.20-12.9)	10.8 (7.98-15.4)	12.4 (8.49-17.8)	14.9 (9.86-22.3)	17.2 (11.1-26.2
7-day	4.14 (3.34-5.09)	5.08 (4.09-6.25)	6.61 (5.30-8.17)	7.89 (6.28-9.81)	9.64 (7.46-12.7)	10.9 (8.31-14.8)	12.3 (9.17-17.6)	14.1 (9.75-20.3)	17.0 (11.3-25.3)	19.5 (12.6-29.7
10-day	4.81 (3.88-5.89)	5.80 (4.68-7.12)	7.44 (5.98-9.16)	8.79 (7.03-10.9)	10.7 (8.27-14.0)	12.0 (9.15-16.2)	13.5 (10.1-19.1)	15.4 (10.7-22.0)	18.4 (12.2-27.3)	20.9 (13.6-31.7
20-day	6.93 (5.63-8.43)	7.99 (6.49-9.74)	9.74 (7.88-11.9)	11.2 (9.00-13.8)	13.2 (10.3-17.0)	14.7 (11.2-19.4)	16.3 (12.0-22.5)	18.1 (12.6-25.6)	20.7 (13.8-30.6)	22.9 (14.9-34.6
30-day	8.71 (7.11-10.6)	9.81 (7.99-11.9)	11.6 (9.42-14.1)	13.1 (10.6-16.0)	15.1 (11.8-19.4)	16.7 (12.7-21.9)	18.3 (13.4-24.9)	20.0 (13.9-28.2)	22.3 (14.9-32.7)	24.1 (15.7-36.3
45-day	10.9 (8.95-13.2)	12.1 (9.86-14.6)	13.9 (11.3-16.9)	15.4 (12.5-18.8)	17.5 (13.7-22.2)	19.1 (14.6-24.9)	20.7 (15.2-27.9)	22.3 (15.6-31.3)	24.3 (16.3-35.5)	25.7 (16.8-38.6
60-day	12.8 (10.5-15.4)	13.9 (11.4-16.8)	15.8 (12.9-19.1)	17.4 (14.1-21.1)	19.5 (15.2-24.7)	21.2 (16.1-27.4)	22.8 (16.7-30.4)	24.3 (17.1-34.0)	26.1 (17.5-38.0)	27.2 (17.8-40.8

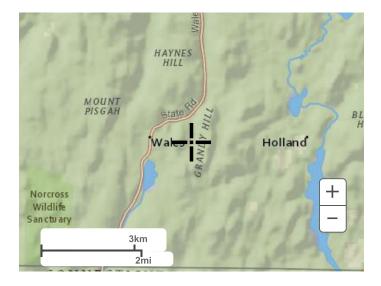

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.


Please refer to NOAA Atlas 14 document for more information.

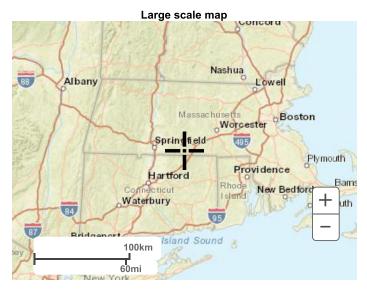
Back to Top

PF graphical


NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Tue Oct 6 17:20:55 2020

Back to Top


Maps & aerials

Small scale terrain

Large scale terrain

Large scale aerial

Back to Top

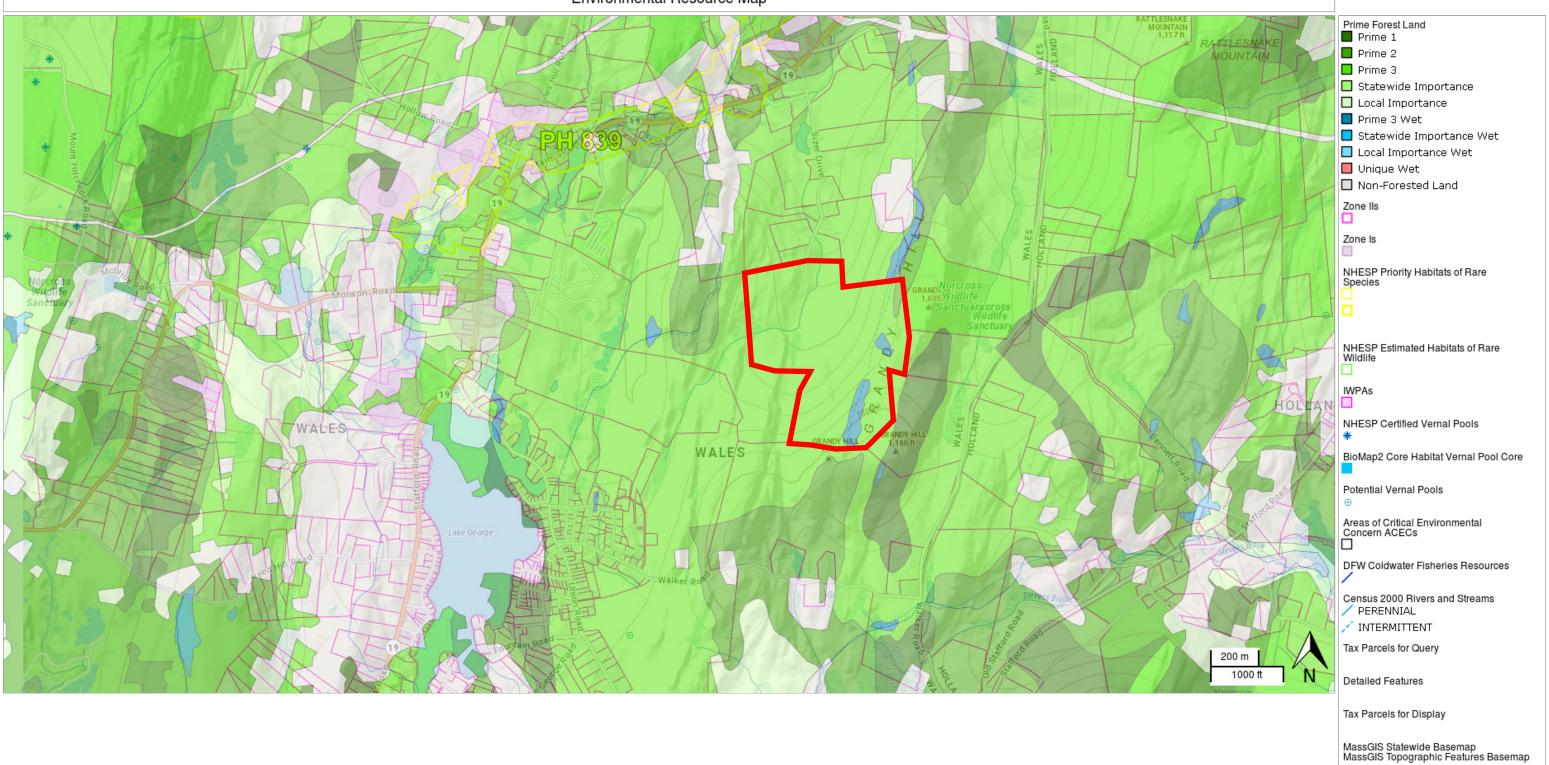
US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

Appendix A.3:

FEMA Flood Map

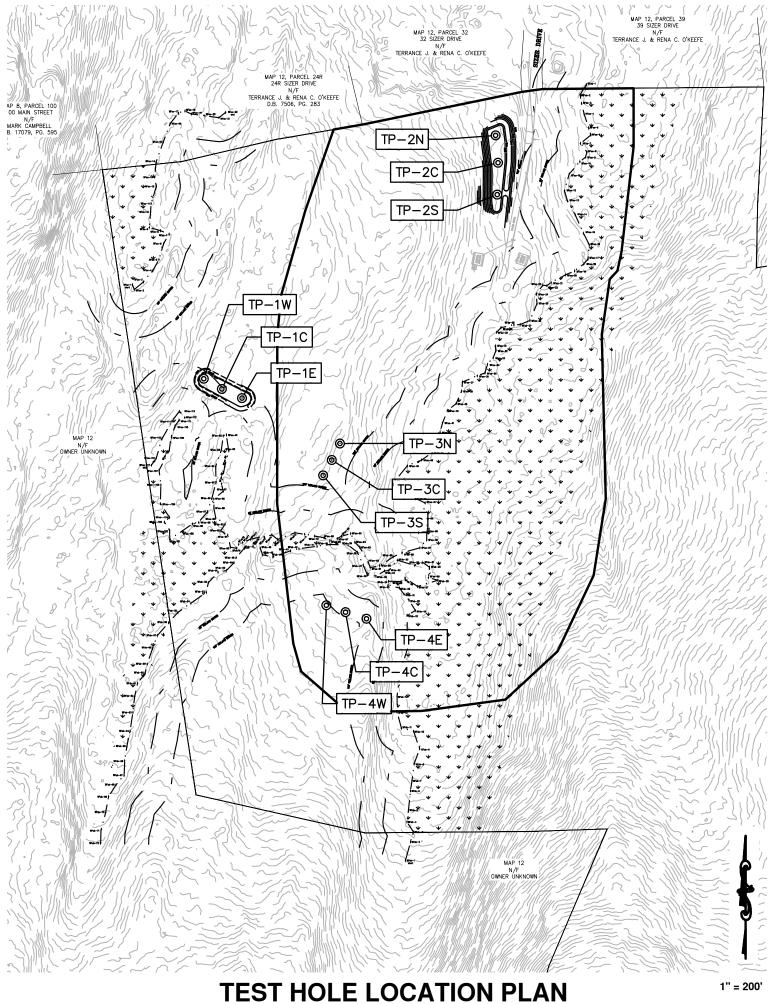
National Flood Hazard Layer FIRMette


Legend

72°12'39"W 42°4'19"N SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) Zone A. V. A9 With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF Area with Flood Risk due to Levee Zone D FLOOD HAZARD NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D - - - - Channel, Culvert, or Storm Sewer GENERAL STRUCTURES LIIII Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation AREA OF MINIMAL FLOOD HAZARD Town of Wales – – Coastal Transect <u>_</u> Base Flood Elevation Line (BFE) 250152 Limit of Study Jurisdiction Boundary ---- Coastal Transect Baseline OTHER **Profile Baseline** 25013 C047 9E FEATURES Hydrographic Feature eff. 7/16/2013 **Digital Data Available** No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 10/7/2020 at 8:28 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map USGS The National Map: Orthoimagery. Data refreshed April 2020 elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 72°12'2"W 42°3'52"N Feet 1:6,000 unmapped and unmodernized areas cannot be used for regulatory purposes. 250 500 1,000 1,500 2,000

Appendix A.4:

Environmental Resource Map



Environmental Resource Map

Appendix A.5:

Test Hole Location Plan & Logs

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observatio	n Hole Numb	Der: <u>1</u> <u>E</u> Hole #	1/5	2021	Time		Weather	· · · ·		
				Dale		Time		vveatner		/ Latitude	Longitude:
1. Land	(0.9., 1		ural field, vacant lot, e					Surface Stone	es (e.g., cobbles,	stones, boulde	rs, etc.) Slope (%)
Des	scription of Lo	ocation:			а. 						<u>.</u>
2. Soil P	arent Materia	al:		·				F	5	· · · · ·	
Dista		0		-		andform			ition on Landscap		
. Distai	nces from:		n Water Body _					/ay			etlands feet
Lineuita	hla Matarial		Property Line _] Yes 🗌 No								Other feet
1		,	*	ii ies. L					•	Ctured Rock	
. Grour	ndwater Obse	erved: 🗹 Yes	s 🗌 No		If ye	s: <u>28</u> "	Depth Wee	ping from Pit	-	Depth S	Standing Water in Hole
			· .			Soil Log					
Depth (in)	Soil Horizon	Soil Texture	Soil Matrix: Color-	Rede	oximorphic Fea	atures		Fragments Volume	Soil Structure	Soil Consistence	0#+++
	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soli Structure	(Moist)	Other
0-1	0	FSL	10YR 2/1	. —	-	-	.0.	0	gran.		OM, litter, roots
1-3	A	FSL	10YR 3/4	-	•	,	0	0	gran.	-	-
3-5	A ₂	FSL	5YR4/4	-	-	-	0	0	gran.	-	-
5-29	Bw	FSL	7.5YR 4/6		-	-	0	D	gran.	_ ¹	refusal
·						-					
			2							· · ·	
Additi	onal Notes:		~								

Sunan 40 Sizer Dr. Wales MA

Commonwealth of Massachusetts P City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Observation	n Hole Numb	er: <u>IC</u>	1/5	12021					-		
			Date	•	Time		Weather		Latitude		Longitude:
Use (e.g., wo	oodland, agricult	ural field, vacant lot, e	etc.)	Vegetation		· ·	Surface Stone	es (e.g., cobbles,	stones, boulder	rs, etc.)	Slope (%)
scription of Lo	ocation:	······						×			
Parent Materia	al:					-					
	0										
nces from:	-										
able Material		· • -									feet
								•			
ndwater Obse	erved: 🗹 Yes	s ∐ No	,	If yes		- · ·	ping from Pit	-	Depth S	tanding Wa	ater in Hole
1						·	Fragmonte			<u>г — — — — — — — — — — — — — — — — — — —</u>	
Soil Horizon	Soil Texture	Soil Matrix: Color-	Red	oximorphic Fea	atures		Volume	Soil Structure	Soil Consistence	4	Other
/Layei	(USDA	moist (mulisell)	Depth	Color	Percent	Gravel	Stones		(Moist)		
0	FSL	10 YR 2/1	-	_	-	0	0	gran.	-	om,	litter, roots
A	FSL	10 YR 4/3	1	-	-	0	0	gran	-	-	
Bw	FSL	7.5YR 6/6	-		-	0	10	gran	-	refus	al
	<i>i</i>										
	• • •										
			1	•				8- 			
				• •							
	Use (e.g., we scription of Lo Parent Materia nces from: able Materials ndwater Obse Soil Horizon /Layer	Use (e.g., woodland, agricult scription of Location: Parent Material: nces from: Ope able Materials Present: [ndwater Observed: [v] Yes Soil Horizon /Layer Soil Texture (USDA O FSL A FSL	scription of Location: Parent Material: Property Mater Body Property Line able Materials Present: Yes No Soil Horizon /Layer Soil Texture Soil Matrix: Color-Moist (Munsell) O FSL IO YR 2/1 A	Hole # Date Use (e.g., woodland, agricultural field, vacant lot, etc.) scription of Location: Parent Material: Property Line Property Line able Materials Present: Yes No Soil Horizon Varent Soil Horizon Soil Texture Soil Matrix: Color-Moist (Munsell) Depth O FSL IO YR 2/1 A	Hole # Date Use (e.g., woodland, agricultural field, vacant lot, etc.) Vegetation scription of Location:	Hole # Date Time Use (e.g., woodland, agricultural field, vacant lot, etc.) Vegetation scription of Location:	Hole # Date Time Use (e.g., woodland, agricultural field, vacant lot, etc.) Vegetation scription of Location:	Hole # Date Time Weather Use (e.g., woodland, agricultural field, vacant lot, etc.) Vegetation Surface Stone scription of Location:	Hole # Date Time Weather Use (e.g., woodland, agricultural field, vacant lot, etc.) Vegetation Surface Stones (e.g., cobbles, scription of Location: Parent Material:	Hole # Date Time Weather Latitude Use (e.g., woodland, agricultural field, vacant lot, etc.) Vegetation Surface Stones (e.g., cobbles, stones, boulder scription of Location:	Hole # Date Time Weather Latitude Use (e.g., woodland, agricultural field, vacant lot, etc.) Vegetation Surface Stones (e.g., cobbles, stones, boulders, etc.) scription of Location:

Additional Notes:

Sunpin 40 Sizer Dr. Wales MA

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observation	n Hole Numb	er: <u>1 W</u>	1/5	12021						
			Hole #	Date	t .	Time		Weather		Latitude	Longitude:
			ural field, vacant lot, e					Surface Stone	es (e.g., cobbles,	stones, boulder	s, etc.) Slope (%)
De	scription of Lo	ocation:					· _				
2. Soil F	arent Materia	al:			<u> </u>			F			
3. Dista	and from	One	n Water Body			ndform			tion on Landscar		
J. DISIA			Property Line _					/ay Vell			tlands feet
4. Unsuita	ble Material		Yes No								Other feet
		erved: 🕑 Yes									
5. Groui	idwater Obse	erved:	S 📋 NO		It yes			ping from Pit	· · · · -	Depth S	tanding Water in Hole
			-			Soil Log		Fragments			
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)		oximorphic Fea	<u> </u>	% by	Volume Cobbles &	Soil Structure		Other
		(Depth	Color	Percent	Gravel	Stones		(Moist)	
0-2	0	FSL	10 YR 2/1	-			Q	0	granular	-	litter, roots
2-14	A	FSL	10 YR 5/3	_	-	-	0	0	gran.	-	-
14 - 30	Bw	FSL	10 YR 6/6		-	_	0	0	gran.	-	refusal on rock
		· · · · ·									
				1	· · ·						
					· · · · ·						· · ·

Additional Notes:

Sunpin 40 Sizer Dr. Wales MA

Commonwealth of Massachusetts P City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	o Observation	n Hole Numb	er: <u>2 N</u> Hole #	1/5 Date	2021	Time		Weather		Latitude	<u> </u>	Longitude:	
			ural field, vacant lot, e						es (e.g., cobbles,		rs, etc.)	Slope (%)	
	Parent Materia					Indform			tion on Landscar	e (SH SH BS	FS TS)		
3. Dista	nces from:		n Water Body _ Property Line _		t	D		/ay	feet	We		fee	
		s Present:	Yes 🗌 No										er.
5. Grou	ndwater Obse	erved: 🗌 Yes	s 🗌 No		If yes	s: Soil Log		ping from Pit		Depth S	itanding W	ater in Hole	
Depth (in)	epth (in) Soil Horizon Soil Texture Soil Matrix: Color /Layer (USDA Moist (Munsell)				oximorphic Fea	ntures Percent	Coarse % by Gravel	Fragments Volume Cobbles &	Soil Structure	Soil Consistence (Moist)		Other	
0-7	A	FSL	7.5 YR 4/4	Depth -		-	Ö	Stones O	gran.		-		
7-18	Bw	FSL	10 YR 5/8	-	-	-	0	0	gran.		refu	al on	rock
					-		-			~			
											-		
		· .	· · · · · · · · · · · · · · · · · · ·				· · · ·						

Additional Notes:

Sumpin 40 Sizer Dr. Wales MA

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observation	h Hole Numb	er: <u>2C</u>	1/5	2021			_				
				Date		Time		Weather		Latitude	Longitude:	
1. Land	Use (e.g., wo	odland, agricult	ural field, vacant lot, e	etc.)	Vegetation			Surface Stone	s (e.g., cobbles,	stones, boulde	rs, etc.) Slope (%)	
De	scription of Lo	ocation:										
2. Soil F	arent Materia	al:	×					Т	S			
						ndform		Posi	tion on Landscap	pe (SU, SH, BS	, FS, TS)	
3. Dista	nces from:	-	n Water Body _					/ay		We	tlands feet	
			Property Line _								Other feet	
4. Unsuita	able Materials	s Present:] Yes 🗌 No	If Yes:	Disturbed S	Soil 🔲	Fill Material		Neathered/Fra	ctured Rock	Bedrock	
5. Grour	ndwater Obse	erved: 🗌 Yes	s 🗌 No		If yes	s:	Depth Wee	pina from Pit		Depth S	Standing Water in Hole	
					-	Soil Log		ping nom i k	-	Dopin C		
	Soil Horizon	Soil Texture	Soil Matrix: Color-	Redo	ximorphic Fea	. –	Coarse I	Fragments Volume		Soil		
Depth (in)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	Consistence (Moist)	Other	
0-6	A	FSL	7.5YR 4/3	-	-	-	0	0	gran.	-	-	
6-12	Bwi	FSL	10 YR 5/6	-	-	-	0	0	gran.	-	-	
12-20	Bwz	FSL	10 YR 5/4	-	- ·	— .	10	0	gran.	-	refusal on rock	-
									· · ·			
		· · · · · · · · · · · · · · · · · · ·		1	· · ·					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

Additional Notes:

Sunpin 40 Sizer Dr. Wales MA

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observation	n Hole Numb					,				
			Hole #	Date		Time		Weather		Latitude	Longitude:
1. Land	Use (e.g., wo	odland, agricult	ural field, vacant lot, e	etc.)	Vegetation			Surface Stone	s (e.g., cobbles,	stones, boulder	s, etc.) Slope (%)
Des	scription of Lo	ocation:	······································								
2 Soil P	arent Materia	al·						Te	2		
2. 00.1	aron materie				La	ndform) tion on Landscar	pe (SU, SH, BS,	FS, TS)
3. Distar	nces from:	Ope	n Water Body	fee	et	D	rainage W	/ay	feet	Wet	tlands feet
			Property Line	fee	et			/ell		(
4. Unsuita	ble Materials	s Present:] Yes 🔲 No	If Yes:	Disturbed S	Soil 🔲 I	Fill Materia		Neathered/Fra	ctured Rock	Bedrock
5 Grour	ndwater Obse				lf vor						
5. Olda					ii yes			ping from Pit	-	Depth Si	tanding Water in Hole
					·	Soil Log		Fragments			
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)	Redo	oximorphic Fea	itures		Volume Cobbles &	Soil Structure	Soil Consistence	Other
	/Layei	(USDA	moist (muliseli)	Depth	Color	Percent	Gravel	Stones		(Moist)	
0-7	A	FSL	7.5YR 4/4	-		-	-	-	gran.	-	-
7-19	Bw	FSL	10YR 4/4	-	-		10	- ·	gran	-	refusal on rock
										-	
	,									· · ·	
					· ·						
					· · · ·						
		l	J					L	L	L	

Additional Notes:

Sunpin 40 Sizer Dr. Wales MA

City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

	• .		-		ry propo	sed prin	ary and r	eserve alsp	osal area)	
Observatior	Hole Numb	er: <u>3N</u> Hole #	<u>1/5</u> Date	21	Time		Weather		Latitude	Longitude:
Use (e.g., wo	odland, agricultu	ural field, vacant lot, e	tc.)	Vegetation		······································	Surface Stone	s (e.g., cobbles,	stones, boulder	s, etc.) Slope (%)
scription of Lo	cation:							<u></u>		
arent Materia	l:						B	s		
	•			" La	ndform		Posi	tion on Landscap	e (SU, SH, BS,	FS, TS)
nces from:	Oper	n Water Body _	fee	t	D	rainage W	/ay	feet	We	tlands feet
	l	Property Line _	fee	t	Drinking	g Water W	/ell	feet	(Other feet
ble Material	s Present:] Yes 🗌 No 🛛 I	fYes:	Disturbed S	Soil 🔲 I	Fill Materia		Weathered/Fra	ctured Rock	Bedrock
ndwater Obse	erved: 🗌 Yes	No		If yes	s:	Depth Wee	ping from Pit	-	Depth S	tanding Water in Hole
					Soil Log	l				
Soil Horizon	Soil Texture	Soil Matrix: Color-	Redo	ximorphic Fea	atures			Cail Structure	Soil	Other
/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Son Structure	(Moist)	Other
A	FSL	7.5YR4/4	-		-	0	0	gr.	1	-
Bw,	FSL	5YR4/6	-	-	-	0	0	9%	-	-
Bwz	FSL	7.5YR 4/6	-		-	0	0	gr.	-	-
Bwz	SL	10YR 4/6	2	-	-	0	0	gr.		refusal on rock
	Observation	Observation Hole Numb Use (e.g., woodland, agricultule scription of Location:	Observation Hole Number: $\frac{3 N}{Hole \#}$ Use (e.g., woodland, agricultural field, vacant lot, erest of the scription of Location: arent Material:	Observation Hole Number: $3N$ $1/5$ Date Date Use (e.g., woodland, agricultural field, vacant lot, etc.) scription of Location:	Observation Hole Number: $3N_{Hole \#}$ $1/5/2($ Use (e.g., woodland, agricultural field, vacant lot, etc.) Vegetation scription of Location:	Observation Hole Number: $3N_{Hole \#}$ $1/5/2($ Use (e.g., woodland, agricultural field, vacant lot, etc.) Vegetation Scription of Location:	Observation Hole Number: $\underline{3N}$ $1/5/2($ Hole # $\underline{1/5/2(}$ Time Use (e.g., woodland, agricultural field, vacant lot, etc.) Vegetation scription of Location: vegetation arent Material: Image Image arent Material: Image Image Property Line feet Drainage W Property Line feet Disturbed Soil Fill Materia Idwater Observed: Yes No If yes: Depth Wee Soil Horizon Soil Texture Soil Matrix: Color- Redoximorphic Features % by A F5L $7.5YR4/4$ - - 0 Bw1 F5L $5YR4/6$ - - 0 Bw2 F5L $7.5YR4/6$ - - 0	Observation Hole Number: $3N$ $1/5/2($ Hole # Lade Time Weather Use (e.g., woodland, agricultural field, vacant lot, etc.) Vegetation Surface Stone scription of Location:	Observation Hole Number: $\frac{3N}{Hole #}$ $\frac{1/5/2(}{Date}$ Time Weather Use (e.g., woodland, agricultural field, vacant lot, etc.) Vegetation Surface Stones (e.g., cobbles, scription of Location: arent Material:	Hole # Date Time Weather Latitude Use (e.g., woodland, agricultural field, vacant lot, etc.) Vegetation Surface Stones (e.g., cobbles, stones, boulder scription of Location:

Additional Notes: Sunpin 40 Sizer Dr. Wales MA

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observation	Hole Numbe	er: <u>3C</u> Hole #	1/5/ Date	2021	Time		Weather		Latitude	Longitude:
			ural field, vacant lot, et	c.)	Vegetation			Surface Stone	s (e.g., cobbles, s	stones, boulders	s, etc.) Slope (%)
Des	cription of Lo	cation:				<u> </u>					
. Soil Pa	arent Materia	l:				<u> </u>		<u> </u>		O (SU SH BS	FS, TS)
						ndform					tlands feet
. Distan	ces from:	Oper	n Water Body	fee	t		-	'ay '			Other feet
		ł	Property Line _	fee	t	Drinking	g Water W	/ell	feet		
. Unsuita	ble Materials	s Present:] Yes 🗌 No 🛛	f Yes:	Disturbed S	Soil 🗋 F	-ill Material		/veathered/Fra	cturea Rock	D Bedrock
. Groun	dwater Obse	erved: 🗌 Yes	s ビ No		If yes	3:	Depth Wee	ping from Pit	-	Depth S	tanding Water in Hole
	/		~			Soil Log			r		
		Soil Texture	Soil Matrix: Color-	Redo	oximorphic Fea	itures		Fragments Volume	Soil Structure	Soil	Other
Depth (in)	Soil Horizon /Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Son Structure	(Moist)	
0-5	A	FSL	7.5 YR 4/4	-	-	-	0	0	Dr.	-	-
5-11	Bw,	FSL	5YR 4/6	-	-	-	0	0	gr.		-
11-15	Bw2	FSL	7.5YR 4/6	-		-	0 *	0	gr.	-	-
15-41	Bw3	SL	10YR4/6	-	-	-	0	0	qr.	-	refusal on ro
						+					
							1	1		<u> </u>	

Additional Notes:

Sunpin 40 Sizer Dr. Wales MA

Commonwealth of Massachusetts [®] City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observation	n Hole Numb	er: <u>3S</u> _{Hole #}	<u> </u>	2021	Time		Weather	х. 	Latitude		Longitude:	
1. Land Des	Use (e.g., wo		ural field, vacant lot, e	,	Vegetation			Surface Stone	es (e.g., cobbles,	stones, boulde	rs, etc.)	Slope (%)	
2. Soil P	arent Materia	al:			<u> </u>	andform		Bosi	tion on Landscap	OR (SIL SH BS	FS TS)		
			n Water Body _ Property Line _] Yes	fee	t	Drinking	g Water V	Vay Vell	feet feet	We	tlands Other	feet	
					If ye		Depth Wee						
Depth (in)					oximorphic Fea	atures Percent		Fragments Volume Cobbles &	Soil Structure	Soil Consistence (Moist)		Other	
0-5	A	FSL	7.5YR 4/4	Depth	_		0	Stones O	gran.		-		<u> </u>
5-11	BWI	FSL	5YR4/6	-	~		0	0	gr.	-	-		
11-14	Bw2	FSL	7.5YR 4/6	-		_	0	0	gr.	-	-	<u>```</u>	
14-40	Bw3	FSL	10 YR 4/6	-		-	0	0	gr	-	-		
40-45	C	SL	7.5YR 4/4	_	-	-	20	0	gr	- ,	anger	-length	limit

Additional Notes: Sunpin 40 Sizer Dr. Wales MA

t5form11.doc • rev. 3/15/18

City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observatior	Hole Numb	er: $\frac{4E}{Hole \#}$	$\frac{1/5}{1}$	202(Time		Weather		Latitude		Longitude:
			ural field, vacant lot, e		Vegetation				es (e.g., cobbles,		rs, etc.)	Slope (%)
	arent Materia		· ·	-				F				
					La	andform		Posi	tion on Landscap	e (SU, SH, BS,	FS, TS)	
3. Distar	nces from:	Oper	n Water Body	fee	t	Di	rainage W	/ay	feet	We	tlands	feet
		I	Property Line _	feei	t	Drinking	g Water V	Vell	feet	(Other	feet
4. Unsuita	ble Materials	s Present:] Yes 🗌 No	lf Yes:] Disturbed	Soil 🗌 F	Fill Materia		Weathered/Fra	ctured Rock	🗌 Bec	Irock
5. Grour	idwater Obse	erved: 🗗 Yes	No		lf ye	s: <u>35</u> "	Depth Wee	ping from Pit	-	Depth S	tanding W	ater in Hole
						Soil Log						
	Soil Horizon	Soil Texture	Soil Matrix: Color-	Redo	ximorphic Fe	atures		Fragments Volume		Soil		
Depth (in)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	Consistence (Moist)		Other
0-1	0		<i>2</i>									
1-5	A	FSL	10YR 3/2		-	-	0	0	gr.	1	-	
5-41	Bw	FSL	10YR 4/4	-	-	-	0	0	er.	~	refus	al on rocks
			۵.									
	x									<u></u>		

Additional Notes: Sunpin 40 Sizer Dr. Wales MA

Commonwealth of Massachusetts City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Longitude:		Latitude		Weather		Time	[2021	Date	Hole #	I Hole Numb					
Slope (%)	s, etc.)	stones, boulder	es (e.g., cobbles, s	urface Stone	S		Vegetation		ural field, vacant lot, e						
		•								cation:	cription of Lo	Des			
			5 ition on Landscap	_ E						al:	arent Materia	Soil P			
						ndform	La								
			feet						n Water Body	•	ices from:	. Distar			
feet									Property Line						
rock	∐ Bed	ctured Rock	Weathered/Frac	<u>ا</u> ۱	ill Material	Soil 📙 F	J Disturbed S	It Yes:	Yes 🗌 No 🛛	s Present:	ble Materials	Unsuita			
ater in Hole	tanding W	Depth Si		ng from Pit	Depth Weepi	s:	If yes		s 凹 No	erved: 🗌 Yes	dwater Obse	. Groun			
				•		Soil Log									
		Soil			Coarse Fr % by Vo	tures	ximorphic Fea	Redo	Soil Matrix: Color-	Soil Texture	Soil Horizon	Depth (in)			
Other		Consistence (Moist)	Soil Structure	Cobbles & Stones		Percent	Color	Depth	Moist (Munsell)	(USDA	/Layer	epth (in)			
											0	0-1			
	4	-	gr.	0	0	-	-	-	10YR 3/2	FSL	A	-5			
ial on rock	refus	-	gr.	0	0	-		-	10YR 9/4	FSL	Bw	5-31			
									:						
,al .	refus	-	-	-		-	-	-	10YR 3/2 10YR 9/4	FSL		-5 5-31			

t5form11.doc • rev. 3/15/18

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

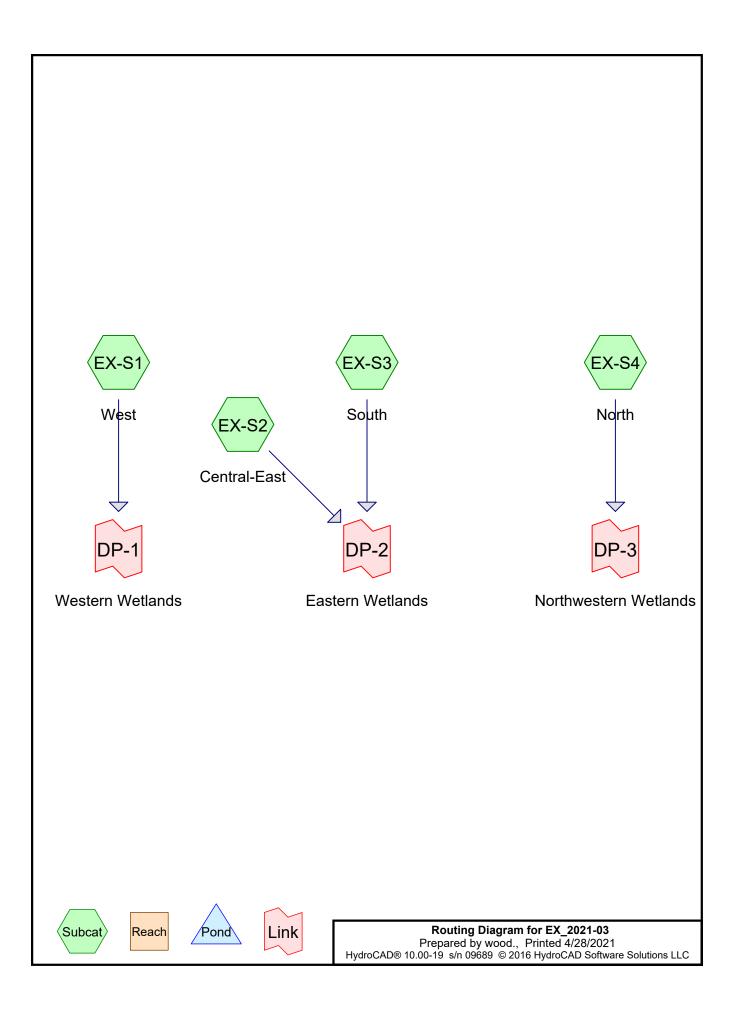
C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observatior	Hole Numb	er: <u>4W</u>	1/5/	2021			·				
			Hole #	Date		Time		Weather		Latitude		Longitude:
1. Land	Use (e.g., wo	odland, agricult	ural field, vacant lot, e	tc.)	Vegetation			Surface Stone	es (e.g., cobbles,	stones, boulder	rs, etc.)	Slope (%)
De	scription of Lo	cation:			· · · · · · · · · · · · · · · · · · ·							
2. Soil F	Parent Materia	d:						F	5			
					La	ndform			tion on Landscar			
3. Dista	nces from:	-	n Water Body				-	'ay		We		
	- hla Matavial		Property Line				-	/ell		(feet
4. Unsulta	adle Material	s Present:] Yes 🗌 No 🛛	TYES: L	_ Disturbed S		Fill Materia		weathered/Fra	ctured Rock		IFOCK
5. Grou	ndwater Obse	rved: 🗌 Yes	s 🗹 No		If yes	s:	Depth Wee	ping from Pit	-	Depth S	tanding W	ater in Hole
					·	Soil Log						
Depth (in)	Soil Horizon	Soil Texture	Soil Matrix: Color-	Redo	oximorphic Fea	atures		Fragments Volume	Soil Structure	Soil Consistence		Other
Depth (iii)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Son Structure	(Moist)		Other
0-1	0	L										
1-4	A	FSL	104R3/1	-	-	-	0	0	gr.	1	-	
4 - 19	Bw	FSL	10YR4/4	-	-	-	0	0	gr.	-	refus	al on roch
		,										
	:											

Additional Notes:

Sungin 40 Sizer Dr. Wales MA

t5form11.doc • rev. 3/15/18


Appendix B:

HydroCAD Analyses

Appendix B.1:

Existing HydroCAD Analysis

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
5,273	98	Paved parking, HSG C (EX-S2)
1,062	98	Unconnected roofs, HSG C (EX-S2)
1,042,701	70	Woods, Good, HSG C (EX-S1, EX-S2, EX-S3, EX-S4)
1,049,036	70	TOTAL AREA

EX_2021-03	7
Prepared by wood.	
HydroCAD® 10.00-19 s/n 09689	© 2016 HydroCAD Software Solutions LL

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment EX-S1: West	Runoff Area=118,364 sf 0.00% Impervious Runoff Depth=0.83" Flow Length=411' Tc=24.5 min CN=70 Runoff=1.46 cfs 8,225 cf
Subcatchment EX-S2: Central-East	Runoff Area=471,424 sf 1.34% Impervious Runoff Depth=0.83" Flow Length=767' Tc=12.9 min CN=70 Runoff=7.46 cfs 32,760 cf
Subcatchment EX-S3: South	Runoff Area=406,052 sf 0.00% Impervious Runoff Depth=0.83" Flow Length=1,199' Tc=17.6 min CN=70 Runoff=5.73 cfs 28,217 cf
Subcatchment EX-S4: North	Runoff Area=53,196 sf 0.00% Impervious Runoff Depth=0.83" Flow Length=256' Tc=8.9 min CN=70 Runoff=0.95 cfs 3,697 cf
Link DP-1: Western Wetlands	Inflow=1.46 cfs 8,225 cf Primary=1.46 cfs 8,225 cf
Link DP-2: Eastern Wetlands	Inflow=12.78 cfs 60,978 cf Primary=12.78 cfs 60,978 cf
Link DP-3: Northwestern Wetlands	Inflow=0.95 cfs 3,697 cf Primary=0.95 cfs 3,697 cf
Total Runoff Area = 1 049 0	36 sf_Runoff Volume = 72 900 cf_Average Runoff Depth = 0.83

Total Runoff Area = 1,049,036 sf Runoff Volume = 72,900 cf Average Runoff Depth = 0.83" 99.40% Pervious = 1,042,701 sf 0.60% Impervious = 6,335 sf

Summary for Subcatchment EX-S1: West

Runoff = 1.46 cfs @ 12.39 hrs, Volume= 8,225 cf, Depth= 0.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.21"

A	rea (sf)	CN E	escription		
1	18,364	70 V	Voods, Go	od, HSG C	
1	18,364	1	00.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
16.2	50	0.0100	0.05	(/ /	Sheet Flow, A-B
8.3	361	0.0208	0.72		Woods: Light underbrush n= 0.400 P2= 3.21" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
24.5	411	Total			

Summary for Subcatchment EX-S2: Central-East

Runoff = 7.46 cfs @ 12.20 hrs, Volume=

32,760 cf, Depth= 0.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.21"

	Area (sf)	CN E	Description		
	465,089	70 V	Voods, Go	od, HSG C	
	5,273	98 F	aved park	ing, HSG C	
	1,062	98 L	Inconnecte	ed roofs, HS	SG C
	471,424	70 V	Veighted A	verade	
	465,089			vious Area	
	6,335	1	.34% Impe	ervious Area	3
	1,062		6.76% Uno		
	,				
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
5.7	50	0.1400	0.15		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.21"
1.7	107	0.0467	1.08		Shallow Concentrated Flow, B-C
					Woodland Kv= 5.0 fps
4.5	490	0.1347	1.84		Shallow Concentrated Flow, C-D
					Woodland Kv= 5.0 fps
0.0	14	0.0714	5.42		Shallow Concentrated Flow, D-E
					Paved Kv= 20.3 fps
1.0	106	0.1226	1.75		Shallow Concentrated Flow, E-F
					Woodland Kv= 5.0 fps
12.9	767	Total			

Summary for Subcatchment EX-S3: South

Runoff = 5.73 cfs @ 12.27 hrs, Volume= 28,217 cf, Depth= 0.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.21"

	A	rea (sf)	CN I	Description		
	4	06,052	70	Woods, Go	od, HSG C	
	4	06,052		100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
_	5.4	50	0.1600	0.16		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.21"
	6.3	666	0.1230	1.75		Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
	5.9	483	0.0745	1.36		Shallow Concentrated Flow, C-D Woodland Kv= 5.0 fps
-	47.0	4 4 0 0	T ()			·

17.6 1,199 Total

Summary for Subcatchment EX-S4: North

Runoff = 0.95 cfs @ 12.15 hrs, Volume= 3,69	7 cf, Depth= 0.83"
---	--------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.21"

	А	rea (sf)	CN [Description		
		53,196	70 \	Noods, Go	od, HSG C	
		53,196		100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	5.4	50	0.1600	0.16	(0.0)	Sheet Flow, Sheet Flow Woods: Light underbrush n= 0.400 P2= 3.21"
	3.5	206	0.0388	0.98		Shallow Concentrated Flow, Shallow Concentrated Flow Woodland Kv= 5.0 fps
-	0 0	256	Total			

8.9 256 Total

Summary for Link DP-1: Western Wetlands

 Inflow Area =
 118,364 sf,
 0.00% Impervious,
 Inflow Depth =
 0.83"
 for
 2-YR event

 Inflow =
 1.46 cfs @
 12.39 hrs,
 Volume=
 8,225 cf

 Primary =
 1.46 cfs @
 12.39 hrs,
 Volume=
 8,225 cf,

Summary for Link DP-2: Eastern Wetlands

Inflow Are	a =	877,476 sf,	0.72% Impervious,	Inflow Depth = 0.83 "	for 2-YR event
Inflow	=	12.78 cfs @ 1	12.23 hrs, Volume=	60,978 cf	
Primary	=	12.78 cfs @ 1	12.23 hrs, Volume=	60,978 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-3: Northwestern Wetlands

Inflow Area	a =	53,196 sf,	0.00% Impervious,	Inflow Depth = 0.83"	for 2-YR event
Inflow	=	0.95 cfs @ 1	12.15 hrs, Volume=	3,697 cf	
Primary	=	0.95 cfs @ 1	12.15 hrs, Volume=	3,697 cf, Atter	n= 0%, Lag= 0.0 min

EX_2021-03	Ту
Prepared by wood.	
HydroCAD® 10.00-19 s/n 09689	© 2016 HydroCAD Software Solutions LLC

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment EX-S1: West	Runoff Area=118,364 sf 0.00% Impervious Runoff Depth=2.07" Flow Length=411' Tc=24.5 min CN=70 Runoff=4.00 cfs 20,452 cf
Subcatchment EX-S2: Central-East	Runoff Area=471,424 sf 1.34% Impervious Runoff Depth=2.07" Flow Length=767' Tc=12.9 min CN=70 Runoff=20.42 cfs 81,457 cf
Subcatchment EX-S3: South	Runoff Area=406,052 sf 0.00% Impervious Runoff Depth=2.07" Flow Length=1,199' Tc=17.6 min CN=70 Runoff=15.70 cfs 70,161 cf
Subcatchment EX-S4: North	Runoff Area=53,196 sf 0.00% Impervious Runoff Depth=2.07" Flow Length=256' Tc=8.9 min CN=70 Runoff=2.59 cfs 9,192 cf
Link DP-1: Western Wetlands	Inflow=4.00 cfs 20,452 cf Primary=4.00 cfs 20,452 cf
Link DP-2: Eastern Wetlands	Inflow=35.38 cfs 151,618 cf Primary=35.38 cfs 151,618 cf
Link DP-3: Northwestern Wetlands	Inflow=2.59 cfs 9,192 cf Primary=2.59 cfs 9,192 cf
Total Runoff Area = 1,049,0	36 sf Runoff Volume = 181,262 cf Average Runoff Depth = 2.07"

otal Runoff Area = 1,049,036 sf Runoff Volume = 181,262 cf Average Runoff Depth = 2.07" 99.40% Pervious = 1,042,701 sf 0.60% Impervious = 6,335 sf

Summary for Subcatchment EX-S1: West

4.00 cfs @ 12.36 hrs, Volume= 20,452 cf, Depth= 2.07" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=5.05"

A	rea (sf)	CN E	escription		
1	18,364	70 V	Voods, Go	od, HSG C	
118,364 100.00% Pervious Area				ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
16.2	50	0.0100	0.05	(/ /	Sheet Flow, A-B
8.3	361	0.0208	0.72		Woods: Light underbrush n= 0.400 P2= 3.21" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
24.5	411	Total			

Summary for Subcatchment EX-S2: Central-East

20.42 cfs @ 12.19 hrs, Volume= Runoff =

81,457 cf, Depth= 2.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=5.05"

_	A	rea (sf)	CN E	Description		
465,089 70 Woods, Good, HSG C						
		5,273	98 F	aved park	ing, HSG C	
		1,062	98 L	Inconnecte	ed roofs, HS	SG C
	4	71,424	70 V	Veighted A	verage	
		65,089			vious Area	
		6,335	1	.34% Impe	ervious Area	a
		1,062		6.76% Un		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.7	50	0.1400	0.15		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.21"
	1.7	107	0.0467	1.08		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
	4.5	490	0.1347	1.84		Shallow Concentrated Flow, C-D
						Woodland Kv= 5.0 fps
	0.0	14	0.0714	5.42		Shallow Concentrated Flow, D-E
						Paved Kv= 20.3 fps
	1.0	106	0.1226	1.75		Shallow Concentrated Flow, E-F
_						Woodland Kv= 5.0 fps
	12.9	767	Total			

Summary for Subcatchment EX-S3: South

Runoff = 15.70 cfs @ 12.26 hrs, Volume= 70,161 cf, Depth= 2.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=5.05"

	A	rea (sf)	CN	Description		
	4	06,052	70	Woods, Go	od, HSG C	
	4	06,052		100.00% P	ervious Are	a
	Tc (min)	Length (feet)			Capacity (cfs)	Description
	5.4	50	0.1600	0.16		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.21"
	6.3	666	0.1230	1.75		Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
	5.9	483	0.0745	1.36		Shallow Concentrated Flow, C-D Woodland Kv= 5.0 fps
-	47.0	4 4 0 0	T ()			ż

17.6 1,199 Total

Summary for Subcatchment EX-S4: North

Runoff = 2.59 cfs @ 12.13 hrs, Volume= 9,192 cf, Depth= 2.	12.13 hrs, Volume= 9,192 cf, Depth=	2.07"
--	-------------------------------------	-------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=5.05"

_	A	rea (sf)	CN E	Description		
		53,196	70 V			
	53,196 100.00% Pervious Area					a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	5.4	50	0.1600	0.16	X /_	Sheet Flow, Sheet Flow
	3.5	206	0.0388	0.98		Woods: Light underbrush n= 0.400 P2= 3.21" Shallow Concentrated Flow, Shallow Concentrated Flow Woodland Kv= 5.0 fps
	8.9	256	Total			

Summary for Link DP-1: Western Wetlands

 Inflow Area =
 118,364 sf, 0.00% Impervious, Inflow Depth = 2.07" for 10-YR event

 Inflow =
 4.00 cfs @ 12.36 hrs, Volume=
 20,452 cf

 Primary =
 4.00 cfs @ 12.36 hrs, Volume=
 20,452 cf, Atten= 0%, Lag= 0.0 min

Summary for Link DP-2: Eastern Wetlands

Inflow Are	a =	877,476 sf,	0.72% Impervious,	Inflow Depth = 2.07"	for 10-YR event
Inflow	=	35.38 cfs @ 1	12.21 hrs, Volume=	151,618 cf	
Primary	=	35.38 cfs @ 1	12.21 hrs, Volume=	151,618 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-3: Northwestern Wetlands

Inflow Area	a =	53,196 sf,	0.00% Impervious,	Inflow Depth = 2.07"	for 10-YR event
Inflow	=	2.59 cfs @ 1	12.13 hrs, Volume=	9,192 cf	
Primary	=	2.59 cfs @ 1	12.13 hrs, Volume=	9,192 cf, Atte	n= 0%, Lag= 0.0 min

EX_2021-03	Type III 24-hr	25-YR Rainfall=6.20"
Prepared by wood.		Printed 4/28/2021
HydroCAD® 10.00-19 s/n 09689 © 2016 HydroCAD Software Soluti	ons LLC	<u>Page 11</u>

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment EX-S1: West	Runoff Area=118,364 sf 0.00% Impervious Runoff Depth=2.96" Flow Length=411' Tc=24.5 min CN=70 Runoff=5.80 cfs 29,243 cf
Subcatchment EX-S2: Central-East	Runoff Area=471,424 sf 1.34% Impervious Runoff Depth=2.96" Flow Length=767' Tc=12.9 min CN=70 Runoff=29.62 cfs 116,470 cf
Subcatchment EX-S3: South	Runoff Area=406,052 sf 0.00% Impervious Runoff Depth=2.96" Flow Length=1,199' Tc=17.6 min CN=70 Runoff=22.78 cfs 100,320 cf
Subcatchment EX-S4: North	Runoff Area=53,196 sf 0.00% Impervious Runoff Depth=2.96" Flow Length=256' Tc=8.9 min CN=70 Runoff=3.75 cfs 13,143 cf
Link DP-1: Western Wetlands	Inflow=5.80 cfs 29,243 cf Primary=5.80 cfs 29,243 cf
Link DP-2: Eastern Wetlands	Inflow=51.36 cfs 216,790 cf Primary=51.36 cfs 216,790 cf
Link DP-3: Northwestern Wetlands	Inflow=3.75 cfs 13,143 cf Primary=3.75 cfs 13,143 cf
Total Runoff Area = 1,049,	036 sf Runoff Volume = 259,176 cf Average Runoff Depth = 2.96'

off Area = 1,049,036 sf Runoff Volume = 259,176 cf Average Runoff Depth = 2.96" 99.40% Pervious = 1,042,701 sf 0.60% Impervious = 6,335 sf

Summary for Subcatchment EX-S1: West

Runoff = 5.80 cfs @ 12.35 hrs, Volume= 29,243 cf, Depth= 2.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=6.20"

Α	rea (sf)	CN D	escription		
1	18,364	70 V	Voods, Go	od, HSG C	
118,364 100.00% Pervious Area				ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
16.2	50	0.0100	0.05		Sheet Flow, A-B
8.3	361	0.0208	0.72		Woods: Light underbrush n= 0.400 P2= 3.21" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
24.5	411	Total			

Summary for Subcatchment EX-S2: Central-East

Runoff = 29.62 cfs @ 12.18 hrs, Volume= 116,470 cf, Depth= 2.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=6.20"

	A	rea (sf)	CN E	escription		
465,089 70 Woods, Good, HSG C						
		5,273	98 F	aved park	ing, HSG C	
		1,062			ed roofs, HS	
	4	71,424		Veighted A		
		65,089			vious Area	
	•	6,335	-		ervious Area	3
		1,062		6.76% Un		-
		.,				
	Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	1
	5.7	50	0.1400	0.15		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.21"
	1.7	107	0.0467	1.08		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
	4.5	490	0.1347	1.84		Shallow Concentrated Flow, C-D
						Woodland Kv= 5.0 fps
	0.0	14	0.0714	5.42		Shallow Concentrated Flow, D-E
						Paved Kv= 20.3 fps
	1.0	106	0.1226	1.75		Shallow Concentrated Flow, E-F
						Woodland Kv= 5.0 fps
	12.9	767	Total			·

Summary for Subcatchment EX-S3: South

Runoff = 22.78 cfs @ 12.25 hrs, Volume= 100,320 cf, Depth= 2.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=6.20"

	A	rea (sf)	CN	Description		
	4	06,052	70	Woods, Go	od, HSG C	
	4	06,052		100.00% P	ervious Are	a
	Tc (min)	Length (feet)			Capacity (cfs)	Description
	5.4	50	0.1600	0.16		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.21"
	6.3	666	0.1230	1.75		Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
	5.9	483	0.0745	1.36		Shallow Concentrated Flow, C-D Woodland Kv= 5.0 fps
-	47.0	4 4 0 0	T ()			ż

17.6 1,199 Total

Summary for Subcatchment EX-S4: North

Runoff = 3.75 cfs @ 12.13 hrs, Volume= 13,143 cf, Depth= 2	2.96"
--	-------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=6.20"

_	A	rea (sf)	CN E	Description		
		53,196	70 V	Voods, Go	od, HSG C	
53,196 100.00% Pervious Area						a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	5.4	50	0.1600	0.16	(0.0)	Sheet Flow, Sheet Flow
	3.5	206	0.0388	0.98		Woods: Light underbrush n= 0.400 P2= 3.21" Shallow Concentrated Flow, Shallow Concentrated Flow Woodland Kv= 5.0 fps
-	8.9	256	Total			

Summary for Link DP-1: Western Wetlands

 Inflow Area =
 118,364 sf,
 0.00% Impervious,
 Inflow Depth =
 2.96"
 for
 25-YR event

 Inflow =
 5.80 cfs @
 12.35 hrs,
 Volume=
 29,243 cf
 29,243 cf,
 Atten= 0%,
 Lag= 0.0 min

Summary for Link DP-2: Eastern Wetlands

Inflow Are	a =	877,476 sf,	0.72% Impervious,	Inflow Depth = 2.96"	for 25-YR event
Inflow	=	51.36 cfs @ 1	12.21 hrs, Volume=	216,790 cf	
Primary	=	51.36 cfs @ 1	12.21 hrs, Volume=	216,790 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-3: Northwestern Wetlands

Inflow Area	a =	53,196 sf,	0.00% Impervious,	Inflow Depth = 2.96"	for 25-YR event
Inflow	=	3.75 cfs @ 1	12.13 hrs, Volume=	13,143 cf	
Primary	=	3.75 cfs @ 1	12.13 hrs, Volume=	13,143 cf, Atte	n= 0%, Lag= 0.0 min

EX_2021-03	Type III 24-hr 100-YR Rainfall=7.96	;"
Prepared by wood.	Printed 4/28/202	1
HydroCAD® 10.00-19 s/n 09689 © 2016 HydroCAD Software Sol	lutions LLC Page 1	<u>5</u>

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment EX-S1: West	Runoff Area=118,364 sf 0.00% Impervious Runoff Depth=4.43" Flow Length=411' Tc=24.5 min CN=70 Runoff=8.71 cfs 43,695 cf
Subcatchment EX-S2: Central-East	Runoff Area=471,424 sf 1.34% Impervious Runoff Depth=4.43" Flow Length=767' Tc=12.9 min CN=70 Runoff=44.51 cfs 174,031 cf
Subcatchment EX-S3: South	Runoff Area=406,052 sf 0.00% Impervious Runoff Depth=4.43" Flow Length=1,199' Tc=17.6 min CN=70 Runoff=34.25 cfs 149,899 cf
Subcatchment EX-S4: North	Runoff Area=53,196 sf 0.00% Impervious Runoff Depth=4.43" Flow Length=256' Tc=8.9 min CN=70 Runoff=5.63 cfs 19,638 cf
Link DP-1: Western Wetlands	Inflow=8.71 cfs 43,695 cf Primary=8.71 cfs 43,695 cf
Link DP-2: Eastern Wetlands	Inflow=77.26 cfs 323,930 cf Primary=77.26 cfs 323,930 cf
Link DP-3: Northwestern Wetlands	Inflow=5.63 cfs 19,638 cf Primary=5.63 cfs 19,638 cf
Total Runoff Area = 1,049,0	036 sf Runoff Volume = 387,263 cf Average Runoff Depth = 4.43" 99.40% Pervious = 1,042,701 sf 0.60% Impervious = 6,335 sf

Summary for Subcatchment EX-S1: West

Runoff = 8.71 cfs @ 12.34 hrs, Volume= 43,695 cf, Depth= 4.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.96"

Α	rea (sf)	CN D	escription					
1	18,364	70 Woods, Good, HSG C						
1	18,364	1	00.00% Pe	ervious Are	a			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
16.2	50	0.0100	0.05		Sheet Flow, A-B			
8.3	361	0.0208	0.72		Woods: Light underbrush n= 0.400 P2= 3.21" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps			
24.5	411	Total						

Summary for Subcatchment EX-S2: Central-East

Runoff = 44.51 cfs @ 12.18 hrs, Volume= 174,031 cf, Depth= 4.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.96"

A	vrea (sf)	CN E	Description		
4	465,089	70 V	Voods, Go	od, HSG C	
	5,273	98 F	aved park	ing, HSG C	
	1,062	98 L	Inconnecte	ed roofs, HS	SG C
	471,424	70 V	Veighted A	verage	
465,089 98.66% Pervious					
	6,335	1	.34% Impe	ervious Area	a
	1,062		6.76% Uno		
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.7	50	0.1400	0.15		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.21"
1.7	107	0.0467	1.08		Shallow Concentrated Flow, B-C
					Woodland Kv= 5.0 fps
4.5	490	0.1347	1.84		Shallow Concentrated Flow, C-D
					Woodland Kv= 5.0 fps
0.0	14	0.0714	5.42		Shallow Concentrated Flow, D-E
					Paved Kv= 20.3 fps
1.0	106	0.1226	1.75		Shallow Concentrated Flow, E-F
					Woodland Kv= 5.0 fps
12.9	767	Total			

Summary for Subcatchment EX-S3: South

Runoff = 34.25 cfs @ 12.25 hrs, Volume= 149,899 cf, Depth= 4.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.96"

_	A	rea (sf)	CN I	Description		
	4	06,052	70	Woods, Go	od, HSG C	
406,052				100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
	5.4	50	0.1600	0.16		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.21"
	6.3	666	0.1230	1.75		Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
	5.9	483	0.0745	1.36		Shallow Concentrated Flow, C-D Woodland Kv= 5.0 fps
-	47.0	4 4 9 9	— • •			

17.6 1,199 Total

Summary for Subcatchment EX-S4: North

Runoff = 5.63 cfs @ 12.13 hrs, Volume= 19,638 cf, Depth= 4	Runoff	=	5.63 cfs @	12.13 hrs,	Volume=	19,638 cf, Depth= 4.4	43"
--	--------	---	------------	------------	---------	-----------------------	-----

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.96"

_	A	rea (sf)	CN E	Description		
		53,196	70 V	Voods, Go	od, HSG C	
		53,196	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	5.4	50	0.1600	0.16	(010)	Sheet Flow, Sheet Flow
	3.5	206	0.0388	0.98		Woods: Light underbrush n= 0.400 P2= 3.21" Shallow Concentrated Flow, Shallow Concentrated Flow Woodland Kv= 5.0 fps
-	0 0	256	Tatal			

8.9 256 Total

Summary for Link DP-1: Western Wetlands

 Inflow Area =
 118,364 sf,
 0.00% Impervious,
 Inflow Depth =
 4.43"
 for
 100-YR event

 Inflow =
 8.71 cfs @
 12.34 hrs,
 Volume=
 43,695 cf

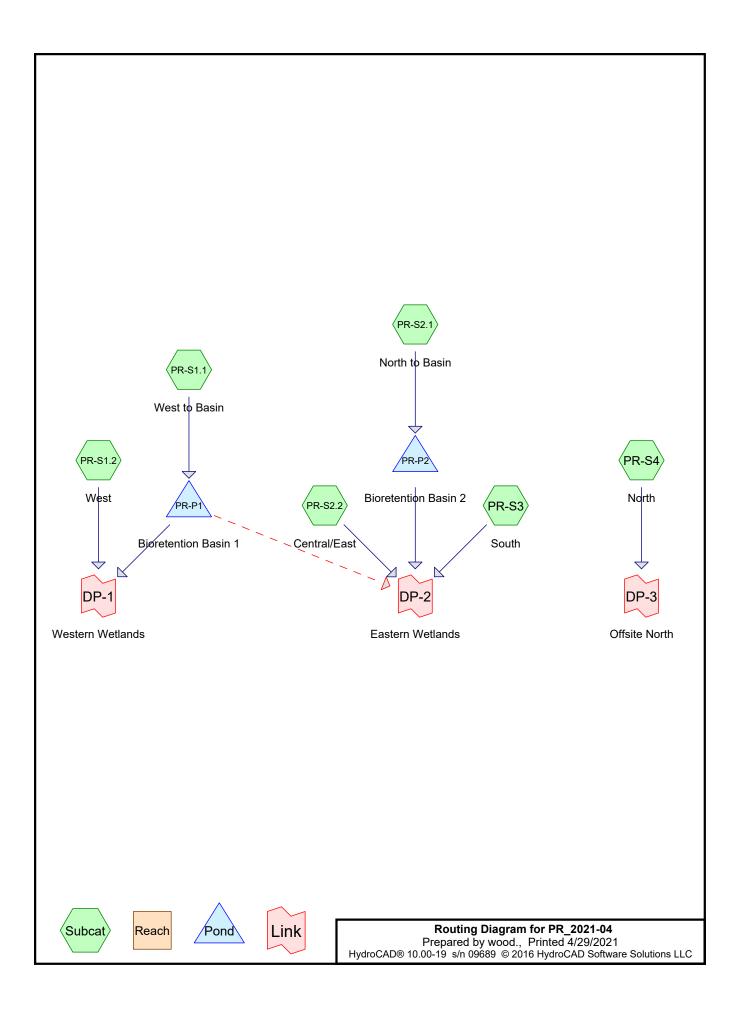
 Primary =
 8.71 cfs @
 12.34 hrs,
 Volume=
 43,695 cf,

Summary for Link DP-2: Eastern Wetlands

Inflow Area	a =	877,476 sf,	0.72% Impervious,	Inflow Depth = 4.43 "	for 100-YR event
Inflow	=	77.26 cfs @ 1	12.21 hrs, Volume=	323,930 cf	
Primary	=	77.26 cfs @ 1	12.21 hrs, Volume=	323,930 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-3: Northwestern Wetlands


Inflow Area	a =	53,196 sf,	0.00% Impervious,	Inflow Depth = 4.43"	for 100-YR event
Inflow	=	5.63 cfs @ 1	12.13 hrs, Volume=	19,638 cf	
Primary	=	5.63 cfs @ 1	12.13 hrs, Volume=	19,638 cf, Atter	n= 0%, Lag= 0.0 min

Appendix B.2:

Proposed HydroCAD Analysis

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
211,359	65	Brush, Good, HSG C (PR-S1.1, PR-S1.2, PR-S2.1, PR-S2.2, PR-S3, PR-S4)
21,631	72	Crushed Stone Access Drive (PR-S2.2)
340,922	71	Meadow, non-grazed, HSG C (PR-S1.1, PR-S2.1, PR-S2.2, PR-S3, PR-S4)
475,124	70	Woods, Good, HSG C (PR-S1.1, PR-S1.2, PR-S2.1, PR-S2.2, PR-S3, PR-S4)
1,049,036	69	TOTAL AREA

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment PR-S1.1: West to Basin	Runoff Area=53,826 sf 0.00% Impervious Runoff Depth=0.83" Flow Length=251' Tc=14.3 min CN=70 Runoff=0.82 cfs 3,740 cf
Subcatchment PR-S1.2: West	Runoff Area=64,538 sf 0.00% Impervious Runoff Depth=0.79" Flow Length=136' Tc=6.6 min CN=69 Runoff=1.16 cfs 4,223 cf
Subcatchment PR-S2.1: North to Basin	Runoff Area=110,956 sf 0.00% Impervious Runoff Depth=0.83" Flow Length=567' Tc=9.8 min CN=70 Runoff=1.93 cfs 7,711 cf
Subcatchment PR-S2.2: Central/East	Runoff Area=360,469 sf 0.00% Impervious Runoff Depth=0.83" Flow Length=490' Tc=9.9 min CN=70 Runoff=6.26 cfs 25,050 cf
Subcatchment PR-S3: South	Runoff Area=406,051 sf 0.00% Impervious Runoff Depth=0.79" Flow Length=1,198' Tc=16.0 min CN=69 Runoff=5.48 cfs 26,570 cf
Subcatchment PR-S4: North	Runoff Area=53,196 sf 0.00% Impervious Runoff Depth=0.79" Flow Length=255' Tc=8.8 min CN=69 Runoff=0.88 cfs 3,481 cf
Pond PR-P1: Bioretention Basin 1 Primary=	Peak Elev=891.20' Storage=194 cf Inflow=0.82 cfs 3,740 cf 0.00 cfs 0 cf Secondary=0.57 cfs 3,731 cf Outflow=0.57 cfs 3,731 cf
Pond PR-P2: Bioretention Basin 2	Peak Elev=841.83' Storage=1,103 cf Inflow=1.93 cfs 7,711 cf Outflow=0.79 cfs 7,711 cf
Link DP-1: Western Wetlands	Inflow=1.16 cfs 4,223 cf Primary=1.16 cfs 4,223 cf
Link DP-2: Eastern Wetlands	Inflow=12.35 cfs 63,061 cf Primary=12.35 cfs 63,061 cf
Link DP-3: Offsite North	Inflow=0.88 cfs 3,481 cf Primary=0.88 cfs 3,481 cf

Total Runoff Area = 1,049,036 sf Runoff Volume = 70,775 cf Average Runoff Depth = 0.81" 100.00% Pervious = 1,049,036 sf 0.00% Impervious = 0 sf

Summary for Subcatchment PR-S1.1: West to Basin

Runoff = 0.82 cfs @ 12.22 hrs, Volume= 3,740 cf, Depth= 0.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.21"

<i>F</i>	Area (sf)	CN I	Description			
	684	70	Noods, Go	od, HSG C		
	5,425	65 I	Brush, Goo	d, HSG C		
	47,717	71 I	Meadow, no	on-grazed,	HSG C	
	53,826	70	Neighted A	verage		
	53,826		100.00% Pe	ervious Are	a	
Tc	Length	Slope	,	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
10.8	50	0.0100	0.08		Sheet Flow, A-B	
					Grass: Dense n= 0.240 P2= 3.21"	
3.5	201	0.0187	0.96		Shallow Concentrated Flow, B-C	
					Short Grass Pasture Kv= 7.0 fps	
14.3	251	Total				

Summary for Subcatchment PR-S1.2: West

Runoff = 1.16 cfs @ 12.11 hrs, Volume= 4,223 cf, Depth= 0.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.21"

_	A	rea (sf)	f) CN	Description		
-		53,885	5 70	Woods, Go	od, HSG C	
_		10,653	3 65	Brush, Goo	d, HSG C	
		64,538	8 69	Weighted A	verage	
64,538 100.00% Pervious Area						а
_	Tc (min)	Length (feet)	· ·	,	Capacity (cfs)	Description
	6.0	50	50 0.120	0 0.14		Sheet Flow, A-B
_	0.6	86	86 0.232	6 2.41		Woods: Light underbrush n= 0.400 P2= 3.21" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
	6.6	100	OC Total			

6.6 136 Total

Summary for Subcatchment PR-S2.1: North to Basin

Runoff = 1.93 cfs @ 12.16 hrs, Volume= 7,711 cf, Depth= 0.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.21"

PR_2021-04

 Type III 24-hr
 2-YR Rainfall=3.21"

 Printed
 4/29/2021

 LC
 Page 5

Prepared by wood.	
HydroCAD® 10.00-19 s/n 09689	© 2016 HydroCAD Software Solutions LLC

A	rea (sf)	CN E	Description							
	22,506	65 E	65 Brush, Good, HSG C							
	88,061	71 N	leadow, no	on-grazed,	HSG C					
	389	70 V	Voods, Go	od, HSG C						
1	10,956	70 V	Veighted A	verage						
1	10,956	1	00.00% Pe	ervious Are	a					
Тс	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6.0	50	0.1200	0.14		Sheet Flow, A-B					
					Woods: Light underbrush n= 0.400 P2= 3.21"					
1.1	107	0.0560	1.66		Shallow Concentrated Flow, B-C					
					Short Grass Pasture Kv= 7.0 fps					
2.7	410	0.1268	2.49		Shallow Concentrated Flow, C-D					
					Short Grass Pasture Kv= 7.0 fps					
9.8	567	Total								

Summary for Subcatchment PR-S2.2: Central/East

Runoff	=	6.26 cfs @	12.16 hrs,	Volume=	25,050 cf,	Depth= 0.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.21"

	A	rea (sf)	CN E	Description								
		47,162		,	od, HSG C							
		66,061	65 E	Brush, Good, HSG C								
	1	25,615	71 N	leadow, no	on-grazed,	HSG C						
*		21,631	72 C	Crushed Stone Access Drive								
	3	60,469	70 V	Veighted A	verage							
	3	60,469	1	00.00% Pe	ervious Are	а						
	Тс	Length	Slope	Velocity	Capacity	Description						
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	6.2	50	0.0400	0.13		Sheet Flow, A-B						
						Grass: Dense n= 0.240 P2= 3.21"						
	1.7	195	0.0718	1.88		Shallow Concentrated Flow, B-C						
						Short Grass Pasture Kv= 7.0 fps						
	0.6	108	0.1852	3.01		Shallow Concentrated Flow, C-D						
						Short Grass Pasture Kv= 7.0 fps						
	0.1	22	0.0909	4.85		Shallow Concentrated Flow, D-E						
						Unpaved Kv= 16.1 fps						
	1.3	115	0.0870	1.47		Shallow Concentrated Flow, E-F						
						Woodland Kv= 5.0 fps						
	9.9	490	Total									

Summary for Subcatchment PR-S3: South

Runoff = 5.48 cfs @ 12.26 hrs, Volume= 26,570 cf, Depth= 0.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.21"

Α	rea (sf)	CN D	Description		
	38,302			od, HSG C	
	91,506		Brush, Goo	,	
-	76,243		,	on-grazed,	HSG C
	06,051		Veighted A	•	
4	06,051	1	00.00% Pe	ervious Are	a
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.4	50	0.1600	0.16		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.21"
5.4	581	0.1310	1.81		Shallow Concentrated Flow, B-C
4.0	4 - 4	0.0700	4 00		Woodland Kv= 5.0 fps
1.3	151	0.0730	1.89		Shallow Concentrated Flow, C-D
2.8	304	0.0690	1.84		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, D-E
2.0	304	0.0090	1.04		Short Grass Pasture Kv= 7.0 fps
0.6	52	0.0380	1.36		Shallow Concentrated Flow, E-F
0.0		0.0000			Short Grass Pasture Kv= 7.0 fps
0.5	60	0.1330	1.82		Shallow Concentrated Flow, F-G
					Woodland Kv= 5.0 fps
16.0	1,198	Total			

Summary for Subcatchment PR-S4: North

Runoff = 0.88 cfs @ 12.15 hrs, Volume= 3,481 cf, Depth= 0.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.21"

Area (sf)	CN	Description
34,702	70	Woods, Good, HSG C
15,208	65	Brush, Good, HSG C
3,286	71	Meadow, non-grazed, HSG C
53,196	69	Weighted Average
53,196		100.00% Pervious Area

PR_2021-04 Prepared by wood.

Type III 24-hr 2-YR Rainfall=3.21" Printed 4/29/2021

Page 7

HydroCAD® 10.00-19 s/n 09689 © 2016 HydroCAD Software Solutions LLC	1 1		
	HydroCAD® 10.00-19	s/n 09689	© 2016 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.4	50	0.1600	0.16		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.21"
	0.4	33	0.0606	1.23		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
	1.9	110	0.0182	0.94		Shallow Concentrated Flow, C-D
						Short Grass Pasture Kv= 7.0 fps
	1.1	62	0.0323	0.90		Shallow Concentrated Flow, D-E
_						Woodland Kv= 5.0 fps

8.8 255 Total

Summary for Pond PR-P1: Bioretention Basin 1

Inflow Area =	53,826 sf, 0.00% Impervious,	Inflow Depth = 0.83" for 2-YR event
Inflow =	0.82 cfs @ 12.22 hrs, Volume=	3,740 cf
Outflow =	0.57 cfs @ 12.44 hrs, Volume=	3,731 cf, Atten= 30%, Lag= 12.9 min
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf
Secondary =	0.57 cfs @ 12.44 hrs, Volume=	3,731 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 891.20' @ 12.44 hrs Surf.Area= 3,009 sf Storage= 194 cf

Plug-Flow detention time= 3.6 min calculated for 3,728 cf (100% of inflow) Center-of-Mass det. time= 2.1 min (885.3 - 883.2)

Volume	Invert	Avail	.Storage	Storage Description	on						
#1	891.00'		2,930 cf		Duter Storage (Irregular)Listed below (Recalc)						
			o 405 f		6,441 cf Embedde						
#2	891.00'		2,125 cf	6,441 cf Overall		ar) Listed below (Recalc)	Inside #1				
			5.055 cf	Total Available St							
			0,000 01		olage						
Elevatio	on Su	rf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area					
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>					
891.0	00	2,959	259.0	0	0	2,959					
893.0	00	3,489	271.0	6,441	6,441	3,692					
893.5	50	3,903	281.0	1,847	8,288	4,152					
893.7	'5	4,774	300.0	1,083	9,371	5,034					
Elevatio	on Su	rf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area					
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)					
891.0	00	2,959	259.0	0	0	2,959					
893.0	00	3,489	271.0	6,441	6,441	3,692					
Device	Routing	١n	vert Outle	et Devices							
#1	Secondary	891.	.00' 8.21	0 in/hr Exfiltration	over Surface are	a					
#2	Primary	#2 Primary 893.50' 50.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)									

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=891.00' (Free Discharge) **2=Sharp-Crested Rectangular Weir** (Controls 0.00 cfs)

Secondary OutFlow Max=0.57 cfs @ 12.44 hrs HW=891.20' (Free Discharge) —1=Exfiltration (Exfiltration Controls 0.57 cfs)

Summary for Pond PR-P2: Bioretention Basin 2

Inflow Area =	110,956 sf, 0.00% Impervious,	Inflow Depth = 0.83" for 2-YR event
Inflow =	1.93 cfs @ 12.16 hrs, Volume=	7,711 cf
Outflow =	0.79 cfs @ 12.52 hrs, Volume=	7,711 cf, Atten= 59%, Lag= 21.8 min
Primary =	0.79 cfs @ 12.52 hrs, Volume=	7,711 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 841.83' @ 12.52 hrs Surf.Area= 4,173 sf Storage= 1,103 cf

Plug-Flow detention time= 7.2 min calculated for 7,705 cf (100% of inflow) Center-of-Mass det. time= 7.2 min (886.3 - 879.0)

Volume	Invert	Avail	l.Storage	e Storage Description				
#1	841.00'	1	10,129 cf		rregular)Listed be			
					- 8,481 cf Embedo			
#2	841.00'		2,799 cf			ar) Listed below (Recalc)) Inside #1	
			40.007.6	8,481 cf Overall				
		1	12,927 cf	Total Available St	orage			
Elevatio	on Si	urf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)		
841.0	0	3,861	379.0	0	0	3,861		
843.0	0	4,632	392.0	8,481	8,481	4,970		
844.0	0	5,835	410.0	5,222	13,703	6,187		
844.7	'5	7,276	434.0	4,907	18,610	7,830		
_					a a			
Elevatio		urf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)		
841.0	0	3,861	379.0	0	0	3,861		
843.0	0	4,632	392.0	8,481	8,481	4,970		
Device	Routing		-	et Devices				
#1	Primary	841.		0 in/hr Exfiltratior		ea		
#2	Primary	833.		" Round HDPE O				
				3.0' CPP, square				
						= 0.0411 '/' Cc= 0.900		
						, Flow Area= 0.79 sf		
#3	Device 2	843.		.8" x 12.8" Horiz. Nyloplast 24" Grate C= 0.600				
	D	0.4.4		ted to weir flow at l				
#4	Primary	844.	.25 10.0	' long Overflow W	eir 2 End Contrac	ction(s)		

Primary OutFlow Max=0.79 cfs @ 12.52 hrs HW=841.83' (Free Discharge) -1=Exfiltration (Exfiltration Controls 0.79 cfs) -2=HDPE Outlet Pipe (Passes 0.00 cfs of 10.65 cfs potential flow) -3=Nyloplast 24" Grate (Controls 0.00 cfs) -4=Overflow Weir (Controls 0.00 cfs)

Summary for Link DP-1: Western Wetlands

Inflow Area	ı =	118,364 sf,	0.00% Impervious,	Inflow Depth = 0.43"	for 2-YR event
Inflow	=	1.16 cfs @ 1	2.11 hrs, Volume=	4,223 cf	
Primary	=	1.16 cfs @ 1	2.11 hrs, Volume=	4,223 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: Eastern Wetlands

Inflow Area	a =	877,476 sf,	0.00% Impervious,	Inflow Depth = 0.86"	for 2-YR event
Inflow	=	12.35 cfs @ 1	2.20 hrs, Volume=	63,061 cf	
Primary	=	12.35 cfs @ 1	2.20 hrs, Volume=	63,061 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-3: Offsite North

Inflow Area	a =	53,196 sf,	0.00% Impervious,	Inflow Depth = 0.79"	for 2-YR event
Inflow	=	0.88 cfs @ 1	12.15 hrs, Volume=	3,481 cf	
Primary	=	0.88 cfs @ 1	12.15 hrs, Volume=	3,481 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

PR_2021-04	Type III
Prepared by wood.	
HydroCAD® 10.00-19 s/n 09689 © 2016 HydroCAD Software Solution	ns LLC

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentPR-S1.1: West to Basin	Runoff Area=53,826 sf 0.00% Impervious Runoff Depth=2.07" Flow Length=251' Tc=14.3 min CN=70 Runoff=2.26 cfs 9,301 cf
SubcatchmentPR-S1.2: West	Runoff Area=64,538 sf 0.00% Impervious Runoff Depth=1.99" Flow Length=136' Tc=6.6 min CN=69 Runoff=3.27 cfs 10,723 cf
Subcatchment PR-S2.1: North to Basin	Runoff Area=110,956 sf 0.00% Impervious Runoff Depth=2.07" Flow Length=567' Tc=9.8 min CN=70 Runoff=5.28 cfs 19,172 cf
SubcatchmentPR-S2.2: Central/East	Runoff Area=360,469 sf 0.00% Impervious Runoff Depth=2.07" Flow Length=490' Tc=9.9 min CN=70 Runoff=17.10 cfs 62,285 cf
Subcatchment PR-S3: South	Runoff Area=406,051 sf 0.00% Impervious Runoff Depth=1.99" ow Length=1,198' Tc=16.0 min CN=69 Runoff=15.54 cfs 67,464 cf
SubcatchmentPR-S4: North	Runoff Area=53,196 sf 0.00% Impervious Runoff Depth=1.99" Flow Length=255' Tc=8.8 min CN=69 Runoff=2.48 cfs 8,838 cf
Pond PR-P1: Bioretention Basin 1 Primary=0.	Peak Elev=893.01' Storage=2,156 cf Inflow=2.26 cfs 9,301 cf 00 cfs 0 cf Secondary=0.66 cfs 9,304 cf Outflow=0.66 cfs 9,304 cf
Pond PR-P2: Bioretention Basin 2	Peak Elev=843.57' Storage=5,609 cf Inflow=5.28 cfs 19,172 cf Outflow=1.25 cfs 19,172 cf
Link DP-1: Western Wetlands	Inflow=3.27 cfs 10,723 cf Primary=3.27 cfs 10,723 cf
Link DP-2: Eastern Wetlands	Inflow=32.33 cfs 158,225 cf Primary=32.33 cfs 158,225 cf
Link DP-3: Offsite North	Inflow=2.48 cfs 8,838 cf Primary=2.48 cfs 8,838 cf

Total Runoff Area = 1,049,036 sf Runoff Volume = 177,783 cf Average Runoff Depth = 2.03" 100.00% Pervious = 1,049,036 sf 0.00% Impervious = 0 sf

Summary for Subcatchment PR-S1.1: West to Basin

Runoff = 2.26 cfs @ 12.21 hrs, Volume= 9,301 cf, Depth= 2.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=5.05"

<i>F</i>	Area (sf)	CN I	Description		
	684	70	Noods, Go	od, HSG C	
	5,425	65 I	Brush, Goo	d, HSG C	
	47,717	71 I	Meadow, no	on-grazed,	HSG C
	53,826	70	Neighted A	verage	
	53,826		100.00% Pe	ervious Are	а
Tc	Length	Slope	,	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.8	50	0.0100	0.08		Sheet Flow, A-B
					Grass: Dense n= 0.240 P2= 3.21"
3.5	201	0.0187	0.96		Shallow Concentrated Flow, B-C
					Short Grass Pasture Kv= 7.0 fps
14.3	251	Total			

Summary for Subcatchment PR-S1.2: West

Runoff = 3.27 cfs @ 12.10 hrs, Volume= 10,723 cf, Depth= 1.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=5.05"

_	A	rea (sf)	CN	Description		
		53,885	70	Woods, Go	od, HSG C	
_		10,653	65	Brush, Goo	d, HSG C	
		64,538	69	Weighted A	verage	
		64,538		100.00% Pe	ervious Are	а
_	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
	6.0	50	0.1200	0.14		Sheet Flow, A-B
	0.6	86	0.2326	2.41		Woods: Light underbrush n= 0.400 P2= 3.21" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
	6.6	100	Tatal			

6.6 136 Total

Summary for Subcatchment PR-S2.1: North to Basin

Runoff = 5.28 cfs @ 12.15 hrs, Volume= 19,172 cf, Depth= 2.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=5.05"

PR_2021-04

 Type III 24-hr
 10-YR Rainfall=5.05"

 Printed
 4/29/2021

 LLC
 Page 12

— • • • •	51
Prepared by wood.	
HydroCAD® 10.00-19 s/n 0968	9 © 2016 HydroCAD Software Solutions LLC

<i>F</i>	Area (sf)	CN	Description		
	22,506	65	Brush, Goo	d, HSG C	
	88,061	71	Meadow, no	on-grazed,	HSG C
	389	70	Woods, Go	od, HSG C	
	110,956	70	Weighted A	verage	
	110,956		100.00% Pe	ervious Are	а
Tc	Length	Slope	,	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
6.0	50	0.1200	0.14		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.21"
1.1	107	0.0560	1.66		Shallow Concentrated Flow, B-C
					Short Grass Pasture Kv= 7.0 fps
2.7	410	0.1268	2.49		Shallow Concentrated Flow, C-D
					Short Grass Pasture Kv= 7.0 fps
9.8	567	Total			
(min) 6.0 1.1 2.7	(feet) 50 107 410	(ft/ft 0.1200 0.0560 0.1268) (ft/sec)) 0.14) 1.66		Sheet Flow, A-B Woods: Light underbrush n= 0.400 P2= 3.21" Shallow Concentrated Flow, B-C Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, C-D

Summary for Subcatchment PR-S2.2: Central/East

Runoff	=	17.10 cfs @	12.15 hrs,	Volume=	62,285 cf, Depth= 2.07"
--------	---	-------------	------------	---------	-------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=5.05"

	A	rea (sf)	CN E	escription				
		47,162		Woods, Good, HSG C				
		66,061		rush, Goo				
	1	25,615	71 N	leadow, no	on-grazed,	HSG C		
*		21,631	72 C	rushed Sto	one Access	s Drive		
	3	60,469	70 V	Veighted A	verage			
	3	60,469	1	00.00% Pe	ervious Are	а		
	Тс	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	6.2	50	0.0400	0.13		Sheet Flow, A-B		
						Grass: Dense n= 0.240 P2= 3.21"		
	1.7	195	0.0718	1.88		Shallow Concentrated Flow, B-C		
						Short Grass Pasture Kv= 7.0 fps		
	0.6	108	0.1852	3.01		Shallow Concentrated Flow, C-D		
						Short Grass Pasture Kv= 7.0 fps		
	0.1	22	0.0909	4.85		Shallow Concentrated Flow, D-E		
						Unpaved Kv= 16.1 fps		
	1.3	115	0.0870	1.47		Shallow Concentrated Flow, E-F		
						Woodland Kv= 5.0 fps		
	9.9	490	Total					

Summary for Subcatchment PR-S3: South

Runoff = 15.54 cfs @ 12.23 hrs, Volume= 67,464 cf, Depth= 1.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=5.05"

A	rea (sf)	CN D	Description		
2	238,302	70 V	Voods, Go	od, HSG C	
	91,506		Brush, Goo	,	
	76,243	71 N	leadow, no	on-grazed,	HSG C
4	106,051	69 V	Veighted A	verage	
4	106,051	1	00.00% Pe	ervious Are	а
_				. .	
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.4	50	0.1600	0.16		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.21"
5.4	581	0.1310	1.81		Shallow Concentrated Flow, B-C
4.0	454	0.0700	4 00		Woodland Kv= 5.0 fps
1.3	151	0.0730	1.89		Shallow Concentrated Flow, C-D
2.0	204	0.0000	1 0 1		Short Grass Pasture Kv= 7.0 fps
2.8	304	0.0690	1.84		Shallow Concentrated Flow, D-E Short Grass Pasture Kv= 7.0 fps
0.6	52	0.0380	1.36		Shallow Concentrated Flow, E-F
0.0	JZ	0.0500	1.50		Short Grass Pasture Kv= 7.0 fps
0.5	60	0.1330	1.82		Shallow Concentrated Flow, F-G
0.0	00	0.1000	1.02		Woodland Kv= 5.0 fps
16.0	1,198	Total			
10.0	1,190	TUIAI			

Summary for Subcatchment PR-S4: North

Runoff = 2.48 cfs @ 12.13 hrs, Volume= 8,838 cf, Depth= 1.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=5.05"

Area (sf)	CN	Description
34,702	70	Woods, Good, HSG C
15,208	65	Brush, Good, HSG C
3,286	71	Meadow, non-grazed, HSG C
53,196	69	Weighted Average
53,196		100.00% Pervious Area

PR_2021-04 Prepared by wood.

Type III 24-hr 10-YR Rainfall=5.05" Printed 4/29/2021 HydroCAD® 10.00-19 s/n 09689 © 2016 HydroCAD Software Solutions LLC

Page 14

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.4	50	0.1600	0.16		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.21"
0.4	33	0.0606	1.23		Shallow Concentrated Flow, B-C
					Woodland Kv= 5.0 fps
1.9	110	0.0182	0.94		Shallow Concentrated Flow, C-D
					Short Grass Pasture Kv= 7.0 fps
1.1	62	0.0323	0.90		Shallow Concentrated Flow, D-E
					Woodland Kv= 5.0 fps

255 Total 8.8

Summary for Pond PR-P1: Bioretention Basin 1

Inflow Area =	53,826 sf, 0.00% Impervious,	Inflow Depth = 2.07" for 10-YR event
Inflow =	2.26 cfs @ 12.21 hrs, Volume=	9,301 cf
Outflow =	0.66 cfs @ 12.68 hrs, Volume=	9,304 cf, Atten= 71%, Lag= 28.5 min
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf
Secondary =	0.66 cfs @ 12.68 hrs, Volume=	9,304 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 893.01' @ 12.68 hrs Surf.Area= 3,496 sf Storage= 2,156 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 20.3 min (875.1 - 854.8)

Volume	Invert	Avai	I.Storage	Storage Descripti	on		
#1	891.00'		2,930 cf		r regular) Listed bel		
#2	891.00'		2,125 cf			ed = 2,930 cf ar) Listed below (Recalc)	Inside #1
			5,055 cf	Total Available St	orage		
Elevatio (fee		rf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
891.0	00	2,959	259.0	0	0	2,959	
893.0	00	3,489	271.0	6,441	6,441	3,692	
893.5	50	3,903	281.0	1,847	8,288	4,152	
893.7	75	4,774	300.0	1,083	9,371	5,034	
Elevatio		rf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>	
891.0		2,959	259.0	0	0	2,959	
893.0	00	3,489	271.0	6,441	6,441	3,692	
Device	Routing	In	vert Outle	et Devices			
#1	Secondary	891	.00' 8.21	0 in/hr Exfiltratior	n over Surface are	a	
#2	Primary	893	.50' 50.0 '	' long Sharp-Cres	ted Rectangular V	Neir 2 End Contraction(s)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=891.00' (Free Discharge) **2=Sharp-Crested Rectangular Weir** (Controls 0.00 cfs)

Secondary OutFlow Max=0.66 cfs @ 12.68 hrs HW=893.01' (Free Discharge) —1=Exfiltration (Exfiltration Controls 0.66 cfs)

Summary for Pond PR-P2: Bioretention Basin 2

Inflow Area =	110,956 sf, 0.00% Impervious,	Inflow Depth = 2.07" for 10-YR event
Inflow =	5.28 cfs @ 12.15 hrs, Volume=	19,172 cf
Outflow =	1.25 cfs @ 12.62 hrs, Volume=	19,172 cf, Atten= 76%, Lag= 28.6 min
Primary =	1.25 cfs @ 12.62 hrs, Volume=	19,172 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 843.57' @ 12.62 hrs Surf.Area= 5,296 sf Storage= 5,609 cf

Plug-Flow detention time= 41.9 min calculated for 19,159 cf (100% of inflow) Center-of-Mass det. time= 41.9 min (892.6 - 850.6)

Volume	Invert	Ava	il.Storage	Storage Description	on		
#1	841.00'		10,129 cf		Outer Storage (Irregular)Listed below (Recalc)		
					- 8,481 cf Embedo		
#2	841.00'		2,799 cf			ar) Listed below (Recalc)	Inside #1
				8,481 cf Overall	k 33.0% Voids		
			12,927 cf	Total Available St	orage		
Elevation	Su	rf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
841.00		3,861	379.0	0	0	3,861	
843.00		4,632	392.0	8,481	8,481	4,970	
844.00		5,835	410.0	5,222	13,703	6,187	
844.75		7,276	434.0	4,907	18,610	7,830	
	-						
Elevation	Su	rf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>	
841.00		3,861	379.0	0	0	3,861	
843.00		4,632	392.0	8,481	8,481	4,970	
Dovico P	outing	In	vort Outl	et Devices			
	outing				0		
	rimary		-	0 in/hr Exfiltration		ea	
#2 P	rimary	833		" Round HDPE O			
				3.0' CPP, square		= 0.0411 '/' Cc= 0.900	
						r, Flow Area= 0.79 sf	
#3 D	evice 2	8/3					
#5 D		040		12.8" x 12.8" Horiz. Nyloplast 24" Grate C= 0.600 Limited to weir flow at low heads			
#4 P	rimary	844		' long Overflow W		ction(s)	

Primary OutFlow Max=1.24 cfs @ 12.62 hrs HW=843.57' (Free Discharge) 1=Exfiltration (Exfiltration Controls 1.01 cfs) 2=HDPE Outlet Pipe (Passes 0.23 cfs of 11.47 cfs potential flow) 3=Nyloplast 24'' Grate (Weir Controls 0.23 cfs @ 0.84 fps) 4=Overflow Weir (Controls 0.00 cfs)

Summary for Link DP-1: Western Wetlands

Inflow Area =	118,364 sf,	0.00% Impervious,	Inflow Depth = 1.09"	for 10-YR event
Inflow =	3.27 cfs @ 1	I2.10 hrs, Volume=	10,723 cf	
Primary =	3.27 cfs @ 1	12.10 hrs, Volume=	10,723 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: Eastern Wetlands

Inflow Area	a =	877,476 sf,	0.00% Impervious,	Inflow Depth = 2.16"	for 10-YR event
Inflow	=	32.33 cfs @ 1	2.18 hrs, Volume=	158,225 cf	
Primary	=	32.33 cfs @ 1	2.18 hrs, Volume=	158,225 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-3: Offsite North

Inflow Area	a =	53,196 sf,	0.00% Impervious,	Inflow Depth = 1.99"	for 10-YR event
Inflow	=	2.48 cfs @ 1	12.13 hrs, Volume=	8,838 cf	
Primary	=	2.48 cfs @ 1	12.13 hrs, Volume=	8,838 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

PR_2021-04	Тур
Prepared by wood.	
HydroCAD® 10.00-19 s/n 09689	© 2016 HydroCAD Software Solutions LLC

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentPR-S1.1: West to Basin	Runoff Area=53,826 sf 0.00% Impervious Runoff Depth=2.96" Flow Length=251' Tc=14.3 min CN=70 Runoff=3.27 cfs 13,298 cf
SubcatchmentPR-S1.2: West	Runoff Area=64,538 sf 0.00% Impervious Runoff Depth=2.87" Flow Length=136' Tc=6.6 min CN=69 Runoff=4.78 cfs 15,433 cf
SubcatchmentPR-S2.1: North to Basin	Runoff Area=110,956 sf 0.00% Impervious Runoff Depth=2.96" Flow Length=567' Tc=9.8 min CN=70 Runoff=7.65 cfs 27,413 cf
SubcatchmentPR-S2.2: Central/East	Runoff Area=360,469 sf 0.00% Impervious Runoff Depth=2.96" Flow Length=490' Tc=9.9 min CN=70 Runoff=24.79 cfs 89,058 cf
Subcatchment PR-S3: South	Runoff Area=406,051 sf 0.00% Impervious Runoff Depth=2.87" ow Length=1,198' Tc=16.0 min CN=69 Runoff=22.76 cfs 97,100 cf
SubcatchmentPR-S4: North	Runoff Area=53,196 sf 0.00% Impervious Runoff Depth=2.87" Flow Length=255' Tc=8.8 min CN=69 Runoff=3.63 cfs 12,721 cf
Pond PR-P1: Bioretention Basin 1 Primary=0.00	Peak Elev=893.47' Storage=3,845 cf Inflow=3.27 cfs 13,298 cf cfs 0 cf Secondary=0.74 cfs 13,292 cf Outflow=0.74 cfs 13,292 cf
Pond PR-P2: Bioretention Basin 2	Peak Elev=843.82' Storage=6,978 cf Inflow=7.65 cfs 27,413 cf Outflow=3.56 cfs 27,413 cf
Link DP-1: Western Wetlands	Inflow=4.78 cfs 15,433 cf Primary=4.78 cfs 15,433 cf
Link DP-2: Eastern Wetlands	Inflow=46.99 cfs 226,863 cf Primary=46.99 cfs 226,863 cf
Link DP-3: Offsite North	Inflow=3.63 cfs 12,721 cf Primary=3.63 cfs 12,721 cf

Total Runoff Area = 1,049,036 sf Runoff Volume = 255,023 cf Average Runoff Depth = 2.92" 100.00% Pervious = 1,049,036 sf 0.00% Impervious = 0 sf

Summary for Subcatchment PR-S1.1: West to Basin

Runoff = 3.27 cfs @ 12.20 hrs, Volume= 13,298 cf, Depth= 2.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=6.20"

	A	rea (sf)	CN	Description		
		684	70	Woods, Go	od, HSG C	
		5,425	65	Brush, Goo	d, HSG C	
		47,717	71	Meadow, no	on-grazed,	HSG C
		53,826	70	Weighted A	verage	
		53,826		100.00% Pe	ervious Are	a
	Тс	Length	Slope	,	Capacity	Description
(r	nin)	(feet)	(ft/ft) (ft/sec)	(cfs)	
1	8.01	50	0.0100	0.08		Sheet Flow, A-B
						Grass: Dense n= 0.240 P2= 3.21"
	3.5	201	0.0187	0.96		Shallow Concentrated Flow, B-C
						Short Grass Pasture Kv= 7.0 fps
1	14.3	251	Total			

Summary for Subcatchment PR-S1.2: West

Runoff = 4.78 cfs @ 12.10 hrs, Volume= 15,433 cf, Depth= 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=6.20"

_	A	rea (sf)	f) CN	Description		
-		53,885	5 70	Woods, Go	od, HSG C	
_		10,653	3 65	Brush, Goo	d, HSG C	
		64,538	8 69	Weighted A	verage	
		64,538	8	100.00% P	ervious Are	а
_	Tc (min)	Length (feet)	· ·	,	Capacity (cfs)	Description
	6.0	50	50 0.120	0 0.14		Sheet Flow, A-B
_	0.6	86	86 0.232	6 2.41		Woods: Light underbrush n= 0.400 P2= 3.21" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
	6.6	100	OC Total			

6.6 136 Total

Summary for Subcatchment PR-S2.1: North to Basin

Runoff = 7.65 cfs @ 12.14 hrs, Volume= 27,413 cf, Depth= 2.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=6.20"

PR_2021-04

 Type III 24-hr
 25-YR Rainfall=6.20"

 Printed
 4/29/2021

 LLC
 Page 19

Prepared by wood.	
HydroCAD® 10.00-19 s/n 09689	© 2016 HydroCAD Software Solutions LLC

A	rea (sf)	CN E	escription		
	22,506	65 E	Brush, Goo	d, HSG C	
	88,061	71 N	leadow, no	on-grazed,	HSG C
	389	70 V	Voods, Go	od, HSG C	
1	10,956	70 V	Veighted A	verage	
1	10,956	1	00.00% Pe	ervious Are	а
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0	50	0.1200	0.14		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.21"
1.1	107	0.0560	1.66		Shallow Concentrated Flow, B-C
					Short Grass Pasture Kv= 7.0 fps
2.7	410	0.1268	2.49		Shallow Concentrated Flow, C-D
					Short Grass Pasture Kv= 7.0 fps
9.8	567	Total			

Summary for Subcatchment PR-S2.2: Central/East

Runoff	=	24.79 cfs @	12.15 hrs,	Volume=	89,058 cf, Depth= 2	.96"
--------	---	-------------	------------	---------	---------------------	------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=6.20"

	A	rea (sf)	CN E	Description							
	1	47,162	70 V	Woods, Good, HSG C							
		66,061	65 E	Brush, Goo	d, HSG C						
	1	25,615	71 N	leadow, no	on-grazed,	HSG C					
*		21,631	72 C	Crushed Sto	one Access	s Drive					
	3	60,469	70 V	Veighted A	verage						
	3	60,469			ervious Are	а					
	Тс	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	6.2	50	0.0400	0.13		Sheet Flow, A-B					
						Grass: Dense n= 0.240 P2= 3.21"					
	1.7	195	0.0718	1.88		Shallow Concentrated Flow, B-C					
						Short Grass Pasture Kv= 7.0 fps					
	0.6	108	0.1852	3.01		Shallow Concentrated Flow, C-D					
						Short Grass Pasture Kv= 7.0 fps					
	0.1	22	0.0909	4.85		Shallow Concentrated Flow, D-E					
						Unpaved Kv= 16.1 fps					
	1.3	115	0.0870	1.47		Shallow Concentrated Flow, E-F					
						Woodland Kv= 5.0 fps					
	9.9	490	Total								

Summary for Subcatchment PR-S3: South

Runoff = 22.76 cfs @ 12.23 hrs, Volume= 97,100 cf, Depth= 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=6.20"

Α	rea (sf)	CN D	Description		
	38,302			od, HSG C	
	91,506		Brush, Goo	,	
-	76,243		,	on-grazed,	HSG C
	06,051		Veighted A	•	
4	06,051	1	00.00% Pe	ervious Are	a
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.4	50	0.1600	0.16		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.21"
5.4	581	0.1310	1.81		Shallow Concentrated Flow, B-C
4.0	4 - 4	0.0700	4.00		Woodland Kv= 5.0 fps
1.3	151	0.0730	1.89		Shallow Concentrated Flow, C-D
2.8	304	0.0690	1.84		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, D-E
2.0	304	0.0090	1.04		Short Grass Pasture Kv= 7.0 fps
0.6	52	0.0380	1.36		Shallow Concentrated Flow, E-F
0.0		0.0000			Short Grass Pasture Kv= 7.0 fps
0.5	60	0.1330	1.82		Shallow Concentrated Flow, F-G
					Woodland Kv= 5.0 fps
16.0	1,198	Total			

Summary for Subcatchment PR-S4: North

Runoff = 3.63 cfs @ 12.13 hrs, Volume= 12,721 cf, Depth= 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=6.20"

Area (sf)	CN	Description
34,702	70	Woods, Good, HSG C
15,208	65	Brush, Good, HSG C
3,286	71	Meadow, non-grazed, HSG C
53,196	69	Weighted Average
53,196		100.00% Pervious Area

PR_2021-04 Prepared by wood.

Type III 24-hr 25-YR Rainfall=6.20" Printed 4/29/2021 HydroCAD® 10.00-19 s/n 09689 © 2016 HydroCAD Software Solutions LLC

Page 21

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.4	50	0.1600	0.16		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.21"
0.4	33	0.0606	1.23		Shallow Concentrated Flow, B-C
1.0	440	0.0400	0.04		Woodland Kv= 5.0 fps
1.9	110	0.0182	0.94		Shallow Concentrated Flow, C-D
					Short Grass Pasture Kv= 7.0 fps
1.1	62	0.0323	0.90		Shallow Concentrated Flow, D-E
					Woodland Kv= 5.0 fps

8.8 255 Total

Summary for Pond PR-P1: Bioretention Basin 1

Inflow Area =	53,826 sf, 0.00% Impervious,	Inflow Depth = 2.96" for 25-YR event
Inflow =	3.27 cfs @ 12.20 hrs, Volume=	13,298 cf
Outflow =	0.74 cfs @ 12.76 hrs, Volume=	13,292 cf, Atten= 77%, Lag= 33.6 min
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf
Secondary =	0.74 cfs @ 12.76 hrs, Volume=	13,292 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 893.47' @ 12.76 hrs Surf.Area= 3,875 sf Storage= 3,845 cf

Plug-Flow detention time= 38.5 min calculated for 13,283 cf (100% of inflow) Center-of-Mass det. time= 38.2 min (882.5 - 844.3)

Volume	Invert	Avail	.Storage	Storage Description	on						
#1	891.00'		2,930 cf		Duter Storage (Irregular)Listed below (Recalc)						
			o 405 f		6,441 cf Embedde						
#2	891.00'		2,125 cf	6,441 cf Overall		ar) Listed below (Recalc)	Inside #1				
			5,055 cf	Total Available St							
			0,000 0		orage						
Elevatio	on Su	rf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area					
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>					
891.0	00	2,959	259.0	0	0	2,959					
893.0	0	3,489	271.0	6,441	6,441	3,692					
893.5	50	3,903	281.0	1,847	8,288	4,152					
893.7	'5	4,774	300.0	1,083	9,371	5,034					
Elevatio	on Su	rf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area					
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)					
891.0	00	2,959	259.0	0	0	2,959					
893.0	0	3,489	271.0	6,441	6,441	3,692					
Device	Routing	Inv	vert Outle	et Devices							
#1	Secondary	891.	00' 8.21	0 in/hr Exfiltration	over Surface are	a					
#2	#2 Primary 893.50' 50.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)										

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=891.00' (Free Discharge) **2=Sharp-Crested Rectangular Weir** (Controls 0.00 cfs)

Secondary OutFlow Max=0.74 cfs @ 12.76 hrs HW=893.47' (Free Discharge) —1=Exfiltration (Exfiltration Controls 0.74 cfs)

Summary for Pond PR-P2: Bioretention Basin 2

Inflow Area =	110,956 sf, 0.00% Impervious,	Inflow Depth = 2.96" for 25-YR event
Inflow =	7.65 cfs @ 12.14 hrs, Volume=	27,413 cf
Outflow =	3.56 cfs @ 12.42 hrs, Volume=	27,413 cf, Atten= 53%, Lag= 16.4 min
Primary =	3.56 cfs @ 12.42 hrs, Volume=	27,413 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 843.82' @ 12.42 hrs Surf.Area= 5,605 sf Storage= 6,978 cf

Plug-Flow detention time= 40.2 min calculated for 27,394 cf (100% of inflow) Center-of-Mass det. time= 40.2 min (880.4 - 840.2)

Volume	Invert	Ava	il.Storage	Storage Description				
#1	841.00'		10,129 cf		rregular)Listed be			
					- 8,481 cf Embedo			
#2	841.00'		2,799 cf			ar)Listed below (Recalc)	Inside #1	
				8,481 cf Overall				
			12,927 cf	Total Available St	orage			
Elevation	Su	rf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>		
841.00		3,861	379.0	0	0	3,861		
843.00		4,632	392.0	8,481	8,481	4,970		
844.00		5,835	410.0	5,222	13,703	6,187		
844.75		7,276	434.0	4,907	18,610	7,830		
Elevation	C	rf Aroo	Dorim	Ino Store	Cum Store	Mat Area		
	Su				-			
		,		•	·	-		
843.00		4,032	392.0	8,481	8,481	4,970		
Device Ro	outing	In	vert Outle	et Devices				
#1 Pr	rimary	841	.00' 8.21	0 in/hr Exfiltration	over Surface are	ea		
#2 Pr	rimary	833	.00' 12.0	" Round HDPE O	utlet Pipe			
				3.0' CPP, square				
#3 De	evice 2	843		8" x 12.8" Horiz. Nyloplast 24" Grate C= 0.600 nited to weir flow at low heads				
#4 Pr	rimary	844		' long Overflow W		ction(s)		
843.00 844.00 844.75 Elevation (feet) 841.00 843.00 Device Ro #1 Pr #2 Pr #3 De	outing rimary rimary evice 2	4,632 5,835 7,276 rf.Area (sq-ft) 3,861 4,632 <u>In</u> 841 833	392.0 410.0 434.0 Perim. (feet) 379.0 392.0 <u>vert Outli</u> .00' 8.21 5.00' 12.0 L= 7 Inlet n= 0 5.50' 12.8 Limit	8,481 5,222 4,907 Inc.Store (cubic-feet) 0 8,481 et Devices 0 in/hr Exfiltration " Round HDPE O 3.0' CPP, square / Outlet Invert= 83 .013 Corrugated F " x 12.8" Horiz. Ny ted to weir flow at log	8,481 13,703 18,610 Cum.Store (cubic-feet) 0 8,481 over Surface are utlet Pipe edge headwall, K 3.00' / 830.00' S= PE, smooth interior yloplast 24'' Grate ow heads	4,970 6,187 7,830 Wet.Area (sq-ft) 3,861 4,970 ea Ke= 0.500 = 0.0411 '/' Cc= 0.900 c, Flow Area= 0.79 sf e C= 0.600		

Primary OutFlow Max=3.54 cfs @ 12.42 hrs HW=843.82' (Free Discharge) 1=Exfiltration (Exfiltration Controls 1.06 cfs) 2=HDPE Outlet Pipe (Passes 2.47 cfs of 11.59 cfs potential flow) 3=Nyloplast 24" Grate (Weir Controls 2.47 cfs @ 1.84 fps) 4=Overflow Weir (Controls 0.00 cfs)

Summary for Link DP-1: Western Wetlands

Inflow Area	a =	118,364 sf,	0.00% Impervious,	Inflow Depth = 1.56"	for 25-YR event
Inflow	=	4.78 cfs @ 1	12.10 hrs, Volume=	15,433 cf	
Primary	=	4.78 cfs @ 1	12.10 hrs, Volume=	15,433 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: Eastern Wetlands

Inflow Are	a =	877,476 sf,	0.00% Impervious,	Inflow Depth = 3.10"	for 25-YR event
Inflow	=	46.99 cfs @ 1	2.17 hrs, Volume=	226,863 cf	
Primary	=	46.99 cfs @ 1	2.17 hrs, Volume=	226,863 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-3: Offsite North

Inflow Area	a =	53,196 sf,	0.00% Impervious,	Inflow Depth = 2.87"	for 25-YR event
Inflow	=	3.63 cfs @ 1	12.13 hrs, Volume=	12,721 cf	
Primary	=	3.63 cfs @ 1	12.13 hrs, Volume=	12,721 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

PR_2021-04	Type III 24-hr 100-YR Rainfall=7.96"
Prepared by wood.	Printed 4/29/2021
HydroCAD® 10.00-19 s/n 09689 © 2016 HydroCAD Softwa	are Solutions LLC Page 24

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentPR-S1.1: West to Basin	Runoff Area=53,826 sf 0.00% Impervious Runoff Depth=4.43" Flow Length=251' Tc=14.3 min CN=70 Runoff=4.92 cfs 19,870 cf
SubcatchmentPR-S1.2: West	Runoff Area=64,538 sf 0.00% Impervious Runoff Depth=4.32" Flow Length=136' Tc=6.6 min CN=69 Runoff=7.24 cfs 23,210 cf
Subcatchment PR-S2.1: North to Basin	Runoff Area=110,956 sf 0.00% Impervious Runoff Depth=4.43" Flow Length=567' Tc=9.8 min CN=70 Runoff=11.48 cfs 40,961 cf
Subcatchment PR-S2.2: Central/East	Runoff Area=360,469 sf 0.00% Impervious Runoff Depth=4.43" Flow Length=490' Tc=9.9 min CN=70 Runoff=37.21 cfs 133,071 cf
Subcatchment PR-S3: South	Runoff Area=406,051 sf 0.00% Impervious Runoff Depth=4.32" w Length=1,198' Tc=16.0 min CN=69 Runoff=34.69 cfs 146,032 cf
SubcatchmentPR-S4: North	Runoff Area=53,196 sf 0.00% Impervious Runoff Depth=4.32" Flow Length=255' Tc=8.8 min CN=69 Runoff=5.49 cfs 19,131 cf
Pond PR-P1: Bioretention Basin 1 Primary=2.94 cfs	Peak Elev=893.57' Storage=4,245 cf Inflow=4.92 cfs 19,870 cf 3,018 cf Secondary=0.79 cfs 16,914 cf Outflow=3.72 cfs 19,931 cf
Pond PR-P2: Bioretention Basin 2	Peak Elev=844.23' Storage=9,422 cf Inflow=11.48 cfs 40,961 cf Outflow=5.88 cfs 40,961 cf
Link DP-1: Western Wetlands	Inflow=7.24 cfs 26,228 cf Primary=7.24 cfs 26,228 cf
Link DP-2: Eastern Wetlands	Inflow=73.38 cfs 336,977 cf Primary=73.38 cfs 336,977 cf
Link DP-3: Offsite North	Inflow=5.49 cfs 19,131 cf Primary=5.49 cfs 19,131 cf

Total Runoff Area = 1,049,036 sf Runoff Volume = 382,275 cf Average Runoff Depth = 4.37" 100.00% Pervious = 1,049,036 sf 0.00% Impervious = 0 sf

Summary for Subcatchment PR-S1.1: West to Basin

Runoff = 4.92 cfs @ 12.20 hrs, Volume= 19,870 cf, Depth= 4.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.96"

_	A	rea (sf)	CN	Description					
		684	70	Woods, Go	Woods, Good, HSG C				
		5,425	65	Brush, Goo	d, HSG C				
_		47,717	71	Meadow, no	on-grazed,	HSG C			
		53,826	70	70 Weighted Average					
		53,826		100.00% Pe	ervious Are	a			
	Тс	Length	Slope	,	Capacity	Description			
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	10.8	50	0.0100	0.08		Sheet Flow, A-B			
						Grass: Dense n= 0.240 P2= 3.21"			
	3.5	201	0.0187	0.96		Shallow Concentrated Flow, B-C			
_						Short Grass Pasture Kv= 7.0 fps			
	1/3	251	Total						

14.3 251 Total

Summary for Subcatchment PR-S1.2: West

Runoff = 7.24 cfs @ 12.10 hrs, Volume= 23,210 cf, Depth= 4.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.96"

_	A	rea (sf)	CN	Description		
_		53,885	70	Woods, Go	od, HSG C	
_		10,653	65	Brush, Goo	d, HSG C	
		64,538	69	Weighted A	verage	
		64,538		100.00% Pe	ervious Are	а
_	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
	6.0	50	0.1200	0.14		Sheet Flow, A-B
_	0.6	86	0.2326	2.41		Woods: Light underbrush n= 0.400 P2= 3.21" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
	~ ~	400	Tatal			

6.6 136 Total

Summary for Subcatchment PR-S2.1: North to Basin

Runoff = 11.48 cfs @ 12.14 hrs, Volume= 40,961 cf, Depth= 4.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.96"

PR_2021-04

 Type III 24-hr
 100-YR Rainfall=7.96"

 Printed
 4/29/2021

 s LLC
 Page 26

					••
Due we also also de la come a al					
Prepared by wood.					
i iopaioa by wood.					
	1 00000	~ ~ ~ ~ ~ ~ ~ ~		~ ~ ~ ~ .	
HydroCAD® 10.00-19	e/n NUGRU	© 2016 H	$vdro(2\Delta I)$	Software Solut	ione II (C
11yuloond@10.00-13	3/11 0 3 0 0 3	S 201011	yalooAD	Conware Colu	

A	rea (sf)	CN D	escription		
	22,506	65 E	rush, Goo	d, HSG C	
	88,061	71 N	leadow, no	on-grazed,	HSG C
	389	70 V	Voods, Go	od, HSG C	
1	10,956	70 V	Veighted A	verage	
1	10,956			ervious Are	а
	-				
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
6.0	50	0.1200	0.14		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.21"
1.1	107	0.0560	1.66		Shallow Concentrated Flow, B-C
					Short Grass Pasture Kv= 7.0 fps
2.7	410	0.1268	2.49		Shallow Concentrated Flow, C-D
					Short Grass Pasture Kv= 7.0 fps
9.8	567	Total			

Summary for Subcatchment PR-S2.2: Central/East

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.96"

	A	rea (sf)	CN E	Description		
	1	47,162	70 V	Voods, Goo	od, HSG C	
		66,061	65 E	Brush, Goo	d, HSG C	
	1	25,615	71 N	leadow, no	on-grazed,	HSG C
*		21,631	72 C	Crushed Sto	one Access	s Drive
	3	60,469	70 V	Veighted A	verage	
	3	60,469			ervious Are	а
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.2	50	0.0400	0.13		Sheet Flow, A-B
						Grass: Dense n= 0.240 P2= 3.21"
	1.7	195	0.0718	1.88		Shallow Concentrated Flow, B-C
						Short Grass Pasture Kv= 7.0 fps
	0.6	108	0.1852	3.01		Shallow Concentrated Flow, C-D
						Short Grass Pasture Kv= 7.0 fps
	0.1	22	0.0909	4.85		Shallow Concentrated Flow, D-E
						Unpaved Kv= 16.1 fps
	1.3	115	0.0870	1.47		Shallow Concentrated Flow, E-F
						Woodland Kv= 5.0 fps
	9.9	490	Total			

Summary for Subcatchment PR-S3: South

Runoff = 34.69 cfs @ 12.22 hrs, Volume= 146,032 cf, Depth= 4.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.96"

Α	rea (sf)	CN D	Description		
	38,302			od, HSG C	
	91,506		Brush, Goo	,	
-	76,243		,	on-grazed,	HSG C
	06,051		Veighted A	•	
4	06,051	1	00.00% Pe	ervious Are	a
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.4	50	0.1600	0.16		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.21"
5.4	581	0.1310	1.81		Shallow Concentrated Flow, B-C
4.0	4 - 4	0.0700	4 00		Woodland Kv= 5.0 fps
1.3	151	0.0730	1.89		Shallow Concentrated Flow, C-D
2.8	304	0.0690	1.84		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, D-E
2.0	304	0.0090	1.04		Short Grass Pasture Kv= 7.0 fps
0.6	52	0.0380	1.36		Shallow Concentrated Flow, E-F
0.0		0.0000			Short Grass Pasture Kv= 7.0 fps
0.5	60	0.1330	1.82		Shallow Concentrated Flow, F-G
					Woodland Kv= 5.0 fps
16.0	1,198	Total			

Summary for Subcatchment PR-S4: North

Runoff = 5.49 cfs @ 12.13 hrs, Volume= 19,131 cf, Depth= 4.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.96"

Area (sf)	CN	Description
34,702	70	Woods, Good, HSG C
15,208	65	Brush, Good, HSG C
3,286	71	Meadow, non-grazed, HSG C
53,196	69	Weighted Average
53,196		100.00% Pervious Area

PR_2021-04

Type III 24-hr 100-YR Rainfall=7.96" Printed 4/29/2021

Page 28

Prepared by wood.		
HydroCAD® 10.00-19 s/n	09689 © 2016 HydroCAD	Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.4	50	0.1600	0.16		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.21"
	0.4	33	0.0606	1.23		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
	1.9	110	0.0182	0.94		Shallow Concentrated Flow, C-D
						Short Grass Pasture Kv= 7.0 fps
	1.1	62	0.0323	0.90		Shallow Concentrated Flow, D-E
_						Woodland Kv= 5.0 fps

8.8 255 Total

Summary for Pond PR-P1: Bioretention Basin 1

Inflow Area =	53,826 sf, 0.00% Impervious,	Inflow Depth = 4.43" for 100-YR event
Inflow =	4.92 cfs @ 12.20 hrs, Volume=	19,870 cf
Outflow =	3.72 cfs @ 12.36 hrs, Volume=	19,931 cf, Atten= 24%, Lag= 9.4 min
Primary =	2.94 cfs @ 12.36 hrs, Volume=	3,018 cf
Secondary =	0.79 cfs @ 12.36 hrs, Volume=	16,914 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 893.57' @ 12.36 hrs Surf.Area= 4,131 sf Storage= 4,245 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 35.8 min (868.5 - 832.7)

Volume	Invert	Avail	.Storage	Storage Description	on				
#1	891.00'		2,930 cf		regular)Listed belo				
#2	891.00'		2,125 cf	Bioretention Soi	9,371 cf Overall - 6,441 cf Embedded = 2,930 cf Bioretention Soil Storage (Irregular) Listed below (Recalc) Inside #1 6,441 cf Overall x 33.0% Voids				
			5,055 cf	Total Available St	orage				
Elevatio (fee		rf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
891.0	00	2,959	259.0	0	0	2,959			
893.0	00	3,489	271.0	6,441	6,441	3,692			
893.5	50	3,903	281.0	1,847	8,288	4,152			
893.7	'5	4,774	300.0	1,083	9,371	5,034			
Elevatio (fee		rf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
891.0	1	2,959	259.0	0	0	2,959			
893.0	-	2,939 3,489	239.0	6,441	6,441	3,692			
		0,.00			0,111	0,002			
Device	Routing	Inv	ert Outle	et Devices					
#1	Secondary	891.			over Surface are	-			
#2	Primary	893.	50' 50.0 '	long Sharp-Cres	ted Rectangular V	Veir 2 End Contraction(s	5)		

Primary OutFlow Max=2.83 cfs @ 12.36 hrs HW=893.57' (Free Discharge) 2=Sharp-Crested Rectangular Weir (Weir Controls 2.83 cfs @ 0.85 fps)

Secondary OutFlow Max=0.78 cfs @ 12.36 hrs HW=893.57' (Free Discharge) —1=Exfiltration (Exfiltration Controls 0.78 cfs)

Summary for Pond PR-P2: Bioretention Basin 2

Inflow Area =		110,956 sf,	0.00% Impervious,	Inflow Depth = 4.43 "	for 100-YR event
Inflow :	=	11.48 cfs @ 1	12.14 hrs, Volume=	40,961 cf	
Outflow :	=	5.88 cfs @ 1	12.37 hrs, Volume=	40,961 cf, Atte	n= 49%, Lag= 13.5 min
Primary =	=	5.88 cfs @ 1	12.37 hrs, Volume=	40,961 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 844.23' @ 12.37 hrs Surf.Area= 6,263 sf Storage= 9,422 cf

Plug-Flow detention time= 37.8 min calculated for 40,932 cf (100% of inflow) Center-of-Mass det. time= 37.7 min (866.3 - 828.6)

Volume	Invert	Ava	il.Storage	Storage Description	on				
#1	841.00'		10,129 cf		Outer Storage (Irregular)Listed below (Recalc)				
					- 8,481 cf Embedo				
#2	841.00'		2,799 cf			ar)Listed below (Recalc)	Inside #1		
				8,481 cf Overall					
			12,927 cf	Total Available St	orage				
Elevation	Su	rf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>			
841.00		3,861	379.0	0	0	3,861			
843.00		4,632	392.0	8,481	8,481	4,970			
844.00		5,835	410.0	5,222	13,703	6,187			
844.75		7,276	434.0	4,907	18,610	7,830			
Elevation	C	rf Aroo	Dorim	Ino Store	Cum Store	Mat Area			
	Su				-				
		,		•	·	-			
843.00		4,032	392.0	8,481	8,481	4,970			
Device Ro	outing	In	vert Outle	et Devices					
#1 Pr	rimary	841	.00' 8.21	0 in/hr Exfiltration	over Surface are	ea			
#2 Pr	rimary	833	.00' 12.0	" Round HDPE O	utlet Pipe				
				3.0' CPP, square					
#3 De	evice 2	843		2.8" x 12.8" Horiz. Nyloplast 24" Grate C= 0.600 mited to weir flow at low heads					
#4 Pr	rimary	844		' long Overflow W		ction(s)			
843.00 844.00 844.75 Elevation (feet) 841.00 843.00 Device Ro #1 Pr #2 Pr #3 De	outing rimary rimary evice 2	4,632 5,835 7,276 rf.Area (sq-ft) 3,861 4,632 <u>In</u> 841 833	392.0 410.0 434.0 Perim. (feet) 379.0 392.0 <u>vert Outli</u> .00' 8.21 5.00' 12.0 L= 7 Inlet n= 0 5.50' 12.8 Limit	8,481 5,222 4,907 Inc.Store (cubic-feet) 0 8,481 et Devices 0 in/hr Exfiltration " Round HDPE O 3.0' CPP, square / Outlet Invert= 83 .013 Corrugated F " x 12.8" Horiz. Ny ted to weir flow at log	8,481 13,703 18,610 Cum.Store (cubic-feet) 0 8,481 over Surface are utlet Pipe edge headwall, K 3.00' / 830.00' S= PE, smooth interior yloplast 24'' Grate ow heads	4,970 6,187 7,830 Wet.Area (sq-ft) 3,861 4,970 ea Ke= 0.500 = 0.0411 '/' Cc= 0.900 c, Flow Area= 0.79 sf e C= 0.600			

Primary OutFlow Max=5.87 cfs @ 12.37 hrs HW=844.23' (Free Discharge) -1=Exfiltration (Exfiltration Controls 1.19 cfs) -2=HDPE Outlet Pipe (Passes 4.68 cfs of 11.77 cfs potential flow) -3=Nyloplast 24" Grate (Orifice Controls 4.68 cfs @ 4.11 fps) -4=Overflow Weir (Controls 0.00 cfs)

Summary for Link DP-1: Western Wetlands

Inflow Area	a =	118,364 sf,	0.00% Impervious,	Inflow Depth = 2.66"	for 100-YR event
Inflow	=	7.24 cfs @ 1	2.10 hrs, Volume=	26,228 cf	
Primary	=	7.24 cfs @ 1	2.10 hrs, Volume=	26,228 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: Eastern Wetlands

Inflow Area	a =	877,476 sf,	0.00% Impervious,	Inflow Depth = 4.61"	for 100-YR event
Inflow	=	73.38 cfs @ 1	2.18 hrs, Volume=	336,977 cf	
Primary	=	73.38 cfs @ 1	2.18 hrs, Volume=	336,977 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-3: Offsite North

Inflow Area	a =	53,196 sf,	0.00% Impervious,	Inflow Depth = 4.32"	for 100-YR event
Inflow	=	5.49 cfs @ 1	I2.13 hrs, Volume=	19,131 cf	
Primary	=	5.49 cfs @ 1	12.13 hrs, Volume=	19,131 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Appendix B.3:

Runoff Velocity Analysis

Summary for Pond PR-P1: Bioretention Basin 1

Inflow Area =	53,826 sf, 0.00% Impervious,	Inflow Depth = 4.43" for 100-YR event
Inflow =	4.92 cfs @ 12.20 hrs, Volume=	19,870 cf
Outflow =	3.72 cfs @ 12.36 hrs, Volume=	19,931 cf, Atten= 24%, Lag= 9.4 min
Primary =	2.94 cfs @ 12.36 hrs, Volume=	3,018 cf
Secondary =	0.79 cfs @ 12.36 hrs, Volume=	16,914 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 893.57' @ 12.36 hrs Surf.Area= 4,131 sf Storage= 4,245 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 35.8 min (868.5 - 832.7)

Volume	Invert	Avai	I.Storage	Storage Description	on			
#1	891.00'		2,930 cf		regular)Listed bel			
#2	891.00'		2,125 cf	9,371 cf Overall - 6,441 cf Embedded = 2,930 cf Bioretention Soil Storage (Irregular) Listed below (Recalc) Inside #1 6,441 cf Overall x 33.0% Voids				
			5,055 cf	Total Available St	orage			
Elevatior (feet		f.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
891.00		2,959	259.0	0	0	2,959		
893.00		3,489	271.0	6,441	6,441	3,692		
893.50)	3,903	281.0	1,847	8,288	4,152		
893.75	5	4,774	300.0	1,083	9,371	5,034		
Elevatior		f.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(feet		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>		
891.00)	2,959	259.0	0	0	2,959		
893.00)	3,489	271.0	6,441	6,441	3,692		
Device	Routing	Inv	vert Outle	et Devices				
#1	Secondary	891.	.00' 8.21	0 in/hr Exfiltration	over Surface are	a	—	
#2	Primary	893.	.50' 50.0 '	' long Sharp-Cres	ted Rectangular V	Neir 2 End Contraction(s	3)	

Primary OutFlow Max=2.83 cfs @ 12.36 hrs HW=893.57' (Free Discharge) ←2=Sharp-Crested Rectangular Weir (Weir Controls 2.83 cfs @ 0.85 fps)

Secondary OutFlow Max=0.78 cfs @ 12.36 hrs HW=893.57' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.78 cfs)

Runoff velocities less than 5 feet per second are generally considered non-erosive. The overflow weir discharges stormwater at a velocity of 0.85 fps for the 100-year storm, which is a non-erosive velocity. However, the overflow weir includes the addition of an erosion control blanket to strengthen the vegetation/soil within the weir.

Summary for Pond PR-P2: Bioretention Basin 2

Inflow Area	a =	110,956 sf,	0.00% Impervious,	Inflow Depth = 4.43"	for 100-YR event
Inflow	=	11.48 cfs @ 1	2.14 hrs, Volume=	40,961 cf	
Outflow	=	5.88 cfs @ 1	2.37 hrs, Volume=	40,961 cf, Atter	n= 49%, Lag= 13.5 min
Primary	=	5.88 cfs @ 1	2.37 hrs, Volume=	40,961 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 844.23' @ 12.37 hrs Surf.Area= 6,263 sf Storage= 9,422 cf

Plug-Flow detention time= 37.8 min calculated for 40,932 cf (100% of inflow) Center-of-Mass det. time= 37.7 min (866.3 - 828.6)

Volume	Invert	Ava	il.Storage	Storage Descripti	on				
#1	841.00'		10,129 cf	Outer Storage (I	Outer Storage (Irregular)Listed below (Recalc)				
					- 8,481 cf Embedo				
#2	841.00'		2,799 cf			ar)Listed below (Recalc)	Inside #1		
				8,481 cf Overall					
			12,927 cf	Total Available St	torage				
Elevatio	n Su	urf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(feet	:)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
841.00	0	3,861	379.0	0	0	3,861			
843.00	0	4,632	392.0	8,481	8,481	4,970			
844.00	0	5,835	410.0	5,222	13,703	6,187			
844.7	5	7,276	434.0	4,907	18,610	7,830			
Elevatio		urf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
feet		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
	1				· · · ·				
841.00 843.00		3,861	379.0	0	0	3,861			
043.00	J	4,632	392.0	8,481	8,481	4,970			
Device	Routing	In	vert Outle	et Devices					
	Primary	841	.00' 8.21	0 in/hr Exfiltratio	n over Surface ar	ea			
	Primary	837	.00' 12.0	" Round HDPE C	utlet Pipe				
	-		L= 7	4.0' CPP, square	edge headwall, k	Ke= 0.500			
						= 0.0135 '/' Cc= 0.900			
						r, Flow Area= 0.79 sf			
#3	Device 2	843		" x 12.8" Horiz. N		e C= 0.600			
				ted to weir flow at I					
#4	Primary	844	.25' 10.0	' long Overflow W	leir 2 End Contra	ction(s)			
Primary	OutFlow M	ax=5.87	cfs @ 12.3	37 hrs_HW=844.23	8' (Free Discharge	e)			

-1=Exfiltration (Exfiltration Controls 1.19 cfs)

-2=HDPE Outlet Pipe (Passes 4.68 cfs of 8.67 cfs potential flow)

3=Nyloplast 24" Grate (Orifice Controls 4.68 cfs @ 4.11 fps)

-4=Overflow Weir (Controls 0.00 cfs)

Runoff velocities less than 5 feet per second are generally considered non-erosive. With 4.11 fps being directed to the pipe outlet, this velocity is considered non-erosive. However, The pipe outlet includes a riprap plunge pool to dissipate velocity. Additionally, the overflow weir includes the an erosion control blanket to strengthen the vegetation/soil within the weir.

Summary for Subcatchment PR-S1.1: West to Basin

Runoff = 4.92 cfs @ 12.20 hrs, Volume= 19,870 cf, Depth= 4.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.96"

	A	rea (sf)	CN	Description		
		684	70	Woods, Go	od, HSG C	
		5,425	65	Brush, Goo	d, HSG C	
		47,717	71	Meadow, no	on-grazed,	HSG C
		53,826	70	Weighted A	verage	
		53,826		100.00% P	ervious Are	а
-	Тс	Length	Slope	e Velocity	Capacity	Description
(mi	n)	(feet)	(ft/ft) (ft/sec)	(cfs)	
10	.8	50	0.0100) <mark>(0.08</mark>)		Sheet Flow, A-B
						Grass: Dense n= 0.240 P2= 3.21"
3	5.5	201	0.0187	′ <mark>0.96</mark>		Shallow Concentrated Flow, B-C
						Short Grass Pasture Kv= 7.0 fps
14	.3	251	Total			

Summary for Subcatchment PR-S1.2: West

Runoff = 7.24 cfs @ 12.10 hrs, Volume= 23,210 cf, Depth= 4.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.96"

_	A	rea (sf)	CN I	Description		
		53,885	70	Woods, Go	od, HSG C	
_		10,653	65 I	Brush, Goo	d, HSG C	
		64,538	69	Weighted A	verage	
		64,538		100.00% P	ervious Are	а
		Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.0	50	0.1200	0.14		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.21"
	0.6	86	0.2326	<mark>2.41</mark>		Shallow Concentrated Flow, B-C
_						Woodland Kv= 5.0 fps
	0.0	400	T . 4 . 1			

6.6 136 Total

Summary for Subcatchment PR-S2.1: North to Basin

Runoff = 11.48 cfs @ 12.14 hrs, Volume= 40,961 cf, Depth= 4.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.96"

PR_2021-04

Type III 24-hr 100-YR Rainfall=7.96" Printed 4/29/2021

Page 2

Prepared by wood.	
HydroCAD® 10.00-19 s/n 09689	© 2016 HydroCAD Software Solutions LLC

A	rea (sf)	CN E	escription		
	22,506	65 E	Brush, Goo	d, HSG C	
	88,061	71 N	leadow, no	on-grazed,	HSG C
	389	70 V	Voods, Go	od, HSG C	
1	10,956	70 V	Veighted A	verage	
1	10,956	1	00.00% Pe	ervious Are	а
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0	50	0.1200	<mark>0.14</mark>		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.21"
1.1	107	0.0560	<mark>1.66</mark>		Shallow Concentrated Flow, B-C
					Short Grass Pasture Kv= 7.0 fps
2.7	410	0.1268	<mark>2.49</mark>		Shallow Concentrated Flow, C-D
					Short Grass Pasture Kv= 7.0 fps
9.8	567	Total			

Summary for Subcatchment PR-S2.2: Central/East

Runoff	=	37.21 cfs @	12.14 hrs,	Volume=	133,071 cf, Depth= 4.43	3"
--------	---	-------------	------------	---------	-------------------------	----

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.96"

	A	rea (sf)	CN D	escription		
	1	47,162	70 V	Voods, Go	od, HSG C	
		66,061	65 E	Brush, Goo	d, HSG C	
	1	25,615	71 N	leadow, no	on-grazed,	HSG C
*		21,631	72 C	crushed St	one Access	s Drive
	3	60,469	70 V	Veighted A	verage	
	3	60,469			ervious Are	а
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.2	50	0.0400	0.13		Sheet Flow, A-B
						Grass: Dense n= 0.240 P2= 3.21"
	1.7	195	0.0718	<mark>1.88</mark>		Shallow Concentrated Flow, B-C
						Short Grass Pasture Kv= 7.0 fps
	0.6	108	0.1852	<mark>3.01</mark>		Shallow Concentrated Flow, C-D
						Short Grass Pasture Kv= 7.0 fps
	0.1	22	0.0909	<mark>4.85</mark>		Shallow Concentrated Flow, D-E
						Unpaved Kv= 16.1 fps
	1.3	115	0.0870	<mark>1.47</mark>		Shallow Concentrated Flow, E-F
						Woodland Kv= 5.0 fps
	9.9	490	Total			

Summary for Subcatchment PR-S3: South

Runoff = 34.69 cfs @ 12.22 hrs, Volume= 146,032 cf, Depth= 4.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.96"

A	rea (sf)	CN D	escription					
	38,302		,	od, HSG C				
	91,506 76,243		brush, Goo leadow, no		HSG C			
4	76,243 71 Meadow, non-grazed, HSG C 406,051 69 Weighted Average							
4	06,051	1	00.00% Pe	ervious Are	а			
Tc (min)	Length	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
<u>(min)</u> 5.4	(feet) 50	0.1600	<u>(10'sec)</u> 0.16	(015)	Sheet Flow, A-B			
5.4	50	0.1000	0.10		Woods: Light underbrush n= 0.400 P2= 3.21"			
5.4	581	0.1310	<mark>1.81</mark>		Shallow Concentrated Flow, B-C			
4.0	454	0.0700	4.00		Woodland Kv= 5.0 fps			
1.3	151	0.0730	<mark>1.89</mark>		Shallow Concentrated Flow, C-D Short Grass Pasture Kv= 7.0 fps			
2.8	304	0.0690	1.84		Shallow Concentrated Flow, D-E			
					Short Grass Pasture Kv= 7.0 fps			
0.6	52	0.0380	<mark>1.36</mark>		Shallow Concentrated Flow, E-F			
0.5	60	0.1330	1.82		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, F-G			
0.5	00	0.1330	1.02		Woodland Kv= 5.0 fps			
16.0	1,198	Total						

Summary for Subcatchment PR-S4: North

Runoff = 5.49 cfs @ 12.13 hrs, Volume= 19,131 cf, Depth= 4.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.96"

Area (sf)	CN	Description
34,702	70	Woods, Good, HSG C
15,208	65	Brush, Good, HSG C
3,286	71	Meadow, non-grazed, HSG C
53,196	69	Weighted Average
53,196		100.00% Pervious Area

PR_2021-04 Prepared by wood.

Type III 24-hr 100-YR Rainfall=7.96" Printed 4/29/2021

HydroCA	D® 10.00-	19 s/n 09	689 © 201	6 HydroCAD	Software Solutions LLC	Page 4
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
5.4	50	0.1600	<mark>0.16</mark>		Sheet Flow, A-B	
					Woods: Light underbrush n= 0.400 P2= 3.21"	
0.4	33	0.0606	<mark>1.23</mark>		Shallow Concentrated Flow, B-C	
1.9	110	0.0182	0.94		Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-D	
1.9	110	0.0162	0.94		Short Grass Pasture Kv= 7.0 fps	
1.1	62	0.0323	0.90		Shallow Concentrated Flow, D-E	
					Woodland Kv= 5.0 fps	
8.8	255	Total			·	

Runoff velocities within all subwatersheds are non-erosive (<5ft/s) in proposed conditions.

Appendix C:

MassDEP Checklist for Stormwater Report

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

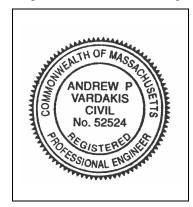
To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

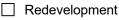
A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

1 P. Valle


4/28/2021

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\bowtie	No disturbance to any Wetland Resource Areas	A wetland crossing is proposed in order to maximize site utilization. However, it spans the resource area and results in no permanent disturbance to the wetlands.
	Site Design Practices (e.g. clustered development	•
	Reduced Impervious Area (Redevelopment Only)	Not applicable
\bowtie	Minimizing disturbance to existing trees and shrub	No tree clearing proposed within the 50-ft wetland buffer area
	LID Site Design Credit Requested:	
	Credit 1	
	Credit 2	
	Credit 3	
	Use of "country drainage" versus curb and gutter of	conveyance and pipe No curb and gutter conveyance proposed.
\boxtimes	Bioretention Cells (includes Rain Gardens) Two	bioretention basins proposed
	Constructed Stormwater Wetlands (includes Grav	el Wetlands designs) No water quality to treat
	Treebox Filter No water quality to treat	
	Water Quality Swale No water quality to treat	
	Grass Channel All stormwater within solar area	to utilize existing drainage patterns.
	Green Roof No building structures proposed Other (describe): Crushed Stone access Ro	pad

Standard 1: No New Untreated Discharges

- No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Checklist (o	continued)
--------------	------------

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge Standard not applicable

Soil Analysis provided.

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static Static	Simple Dynamic
---------------	----------------

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

Recharge BMPs h	ave been sized	to infiltrate the	Required	Recharge Vol	ume.

- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- Calculations showing that the infiltration BMPs will drain in 72 hours are provided.

Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Checklist (continued)

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality Standard not applicable

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- · Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- ☐ Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Cł	necklist (continued)
Sta	ndard 4: Water Quality (continued)
	The BMP is sized (and calculations provided) based on:
	The ½" or 1" Water Quality Volume or
	The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
	The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
	A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.
Sta	ndard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs) Standard not applicable
	The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted prior to the discharge of stormwater to the post-construction stormwater BMPs.
	The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.
	LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
	All exposure has been eliminated.
	All exposure has not been eliminated and all BMPs selected are on MassDEP LUHPPL list.

The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Checklist (continued)

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable Standard not applicable

- The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
 - Limited Project
 - Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
 - Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
 - Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
 - Bike Path and/or Foot Path
 - Redevelopment Project
 - Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.
- A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report. Included in SWPPP, to be provided under separate cover

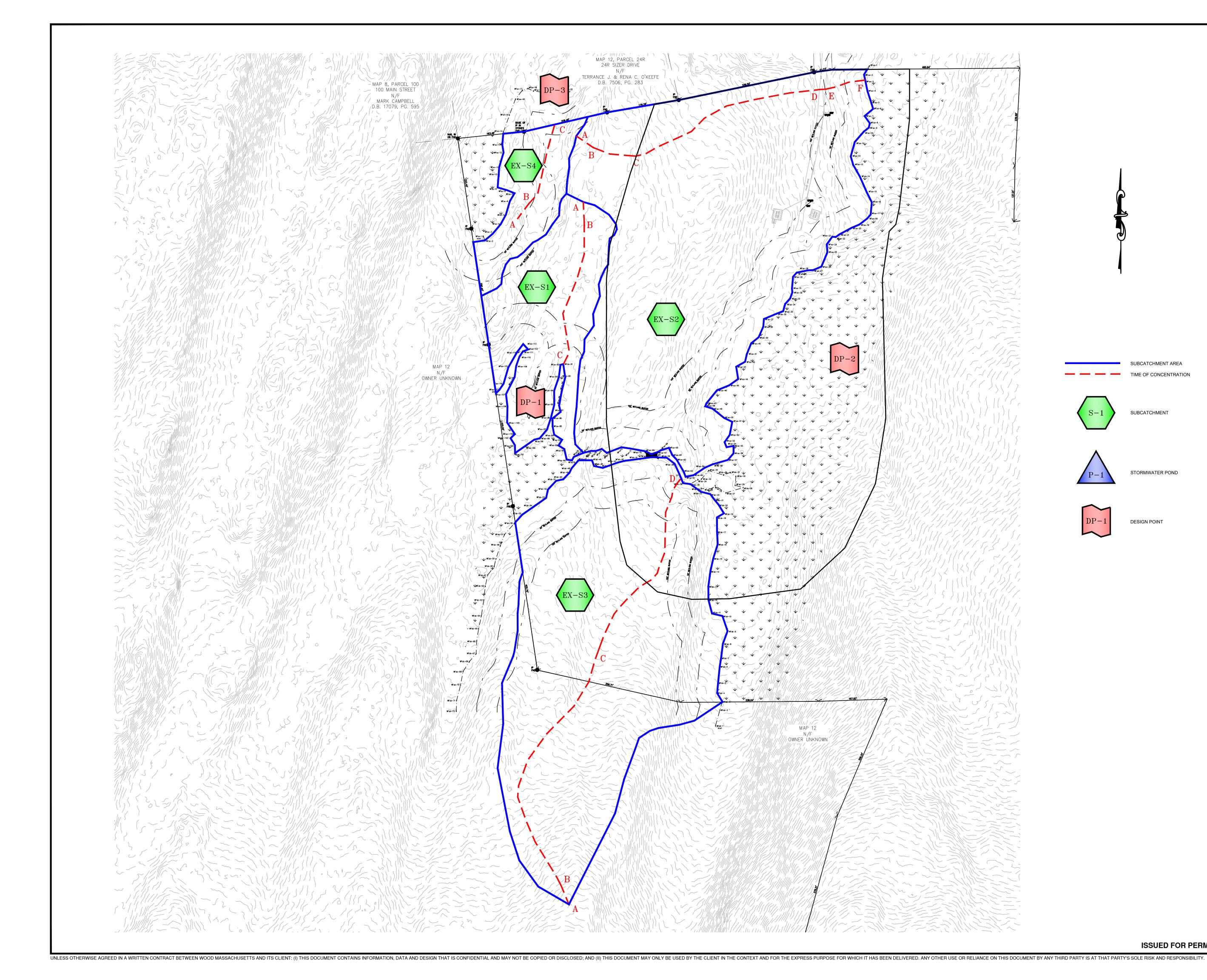
Checklist (continued)

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report. SWPPP provided under separate cover
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

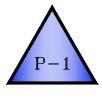
Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.


Standard 10: Prohibition of Illicit Discharges

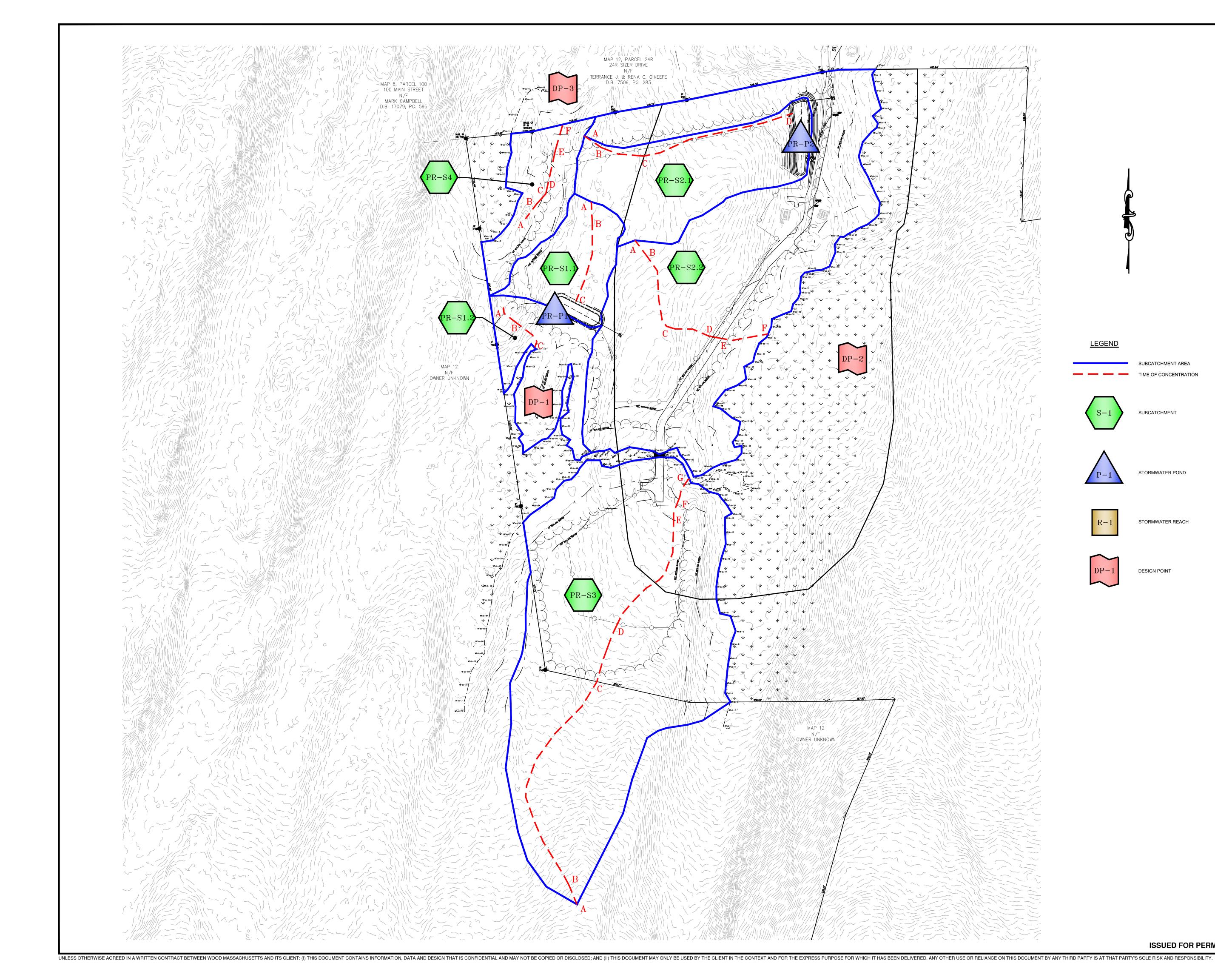
- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges; provided under separate cover
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

Appendix D:


Existing and Proposed Development Drainage Figures

Product: CHCIRSCADD State (BOUDD-MOUNT SOLAR PUBCHEOPMENT LETEENDANCADER PUBCHEOPMENT LETEBN MALES, MA How is a solar of a sol	CHERNARD BUILT SOLAR PUBLICIAN LEICENDARIE AO SIZER DRIVE 40 SIZE	Image: Construction of the sector of the	Television Partial Description and the formation of the		CHUSE	ETTS,	C INC.	
UND-MOUNT SOLAR PUELOPMENT I	FINELACE FILE	Cent: Polici: Concolar by Development Polici:	CLENT: POLECT: POLE	CHELMSFORD MAS TELEPHONE: FAX: (978	SACHI (978) 6) 692-6	USET 692-90 6633	090	824
UND-MOUNT SOLAR PV DEVELOPMENT	ProLECT: CROUND' SOLAR PU DEVELOPMENT Implement Implement SUNPIN SOLAR 40 SIZER DRIVE Implement Implement EVELOPMENT, LLC 40 SIZER DRIVE Implement Implement Implement 10 SIZER DRIVE Implement Implement Implement Implement Implement	The second and the second and sec	Tetra:			APV	APV	APPROVED
UND-MOUNT SOLAR PV DEVELOPMENT 40 SIZER DRIVE WALES, MA P 40 SIZER DRIVE WALES, MA 1 31222 1 40 SIZER DRIVE 1 31222 1 5 1 5 1 5 1 6 1 7 1 7 1 7 1 7 1 8 1 7 1 8 1 13/13/2021 1 14 1 15 1 16 1 173/2021 1 173/2021 1	PROJECT: BROLECT: BROLECT Image: Contract of the image: Contr	The contract of the contract o	Definition Definition <th></th> <th></th> <td>MLM</td> <td>MLM</td> <td></td>			MLM	MLM	
UND-MOUNT SOLAR PV DEVELOPMENT 40 SIZER DRIVE WALES, MA EXISTING WATERSHED MAP EXISTING WATERSHED MAP	PROJECT: PROJECT: SUNPIN SOLAR GROUND-MOUNT SOLAR PV DEVELOPMENT EVELOPMENT, LLC 40 SIZER DRIVE WALES, MA 40 SIZER DRIVE WALES, MA 1 Inter 1 Souting a brighter future through solar 1 Souting a brighter future through solar 1 REVISION 1	THE STATE AND	The server of the second and the sec				ISSUED FOR PERMITTING / NOT FOR CONSTRUCTION	ISSUE / REVISION DESCRIPTION
UND-MOUNT SOLAR PV DEVELOPMENT 40 SIZER DRIVE WALES, MA EXISTING WATERSHED MAP	PROJECT: PROJECT: SUNPIN SOLAR GROUND-MOUNT SOLAR PV DEVELOPMENT EVELOPMENT, LLC 40 SIZER DRIVE WALES, MA 40 SIZER DRIVE WALES, MA 1 Intervision 1 Scouring a brighter future through solar 1 REVISION 0	CHECKED BY: CHECKED BY: PROJECT NUMBER: CHECKED BY: PROJECT NUMBER: CHECKED BY: CHECKED BY: PROJECT NUMBER: CHECKED BY: CHECKED BY: CHECKE	The security of the security o			3/12/2021	1/13/2021	DATE
UND-MOUNT SOLAR PV DEVELOPMENT 40 SIZER DRIVE WALES, MA EXISTING WATERSHED MAP	SUNPIN SOLAR PROJECT: SUNPIN SOLAR 40 SIZER DRIVE EVELOPMENT, LLC 40 SIZER DRIVE MALES, MA 40 SIZER DRIVE MALES, MA 40 SIZER DRIVE MALES, MA 10 SIZER DRIVE MALES, MA TILE: Scuring a brighter future through solar EXISTING WATERSHED MAP	CIENCI CIENCI	THET NUMBER: THET NUMBER: SHEET SHAFT SHAFT SHAFT SHAFT SHAFT SHAFT SHAFT SHAFT			-	0	REVISION
	SL EVE	SEAL: DESIGNED BY: MJW CHECKED BY: APV/GAA PROJECT NUMBER: 365220259 DRAWING NUMBER:	SEAL: DESIGNED BY: MJW CHECKED BY: APV/GAA PROJECT NUMBER: 3652200259 DRAWING NUMBER: W-1 SHEET NUMBER:	PROJECT: GROUND-MOUNT SOLAR PV DEVELOPM 40 SIZER DRIVE WALES, MA	TITLE:		EXISTING WATERSHED MAP	

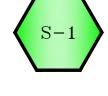
SUBCATCHMENT AREA TIME OF CONCENTRATION


SUBCATCHMENT

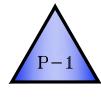
STORMWATER POND

DP-1

DESIGN POINT



сн	WOO ELMS TE	DD MA 27 FORD LEPH FAX	ASSAC 71 MIL 0 MAS 0NE: 0NE:	CHUSE LL ROA SACH (978) () 692-6 /OODF	ETTS, AD USET 692-90	TS 01 090	824
				APV	APV	APV	3Y APPROVED
╞				MſW	MCM	MCM	ISSUED BY
				CONSERVATION COMMISSION COMMENTS	CONSERVATION COMMISSION COMMENTS	ISSUED FOR PERMITTING / NOT FOR CONSTRUCTION	ISSUE / REVISION DESCRIPTION
				4/28/2021	3/12/2021	1/13/2021	DATE
				2	1	0	REVISION
		WALES MA		TITLE:		PROPOSED WATERSHED MAP	
CLIENT:						Securing a brighter future through solar	
MJV CHE APV PRC	SIGNE	D BY: NUN	IBER: 36522 /IBER	MJW SCA AS S	LE: Show		
SHE	ET N			-2 F	2		


<u>LEGEND</u>

SUBCATCHMENT AREA TIME OF CONCENTRATION

SUBCATCHMENT

STORMWATER POND

STORMWATER REACH

DESIGN POINT